
Pattern Recognition 88 (2019) 75–89 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Robust visual tracking via nonlocal regularized multi-view sparse 

representation 

Bin Kang 

a , Wei-Ping Zhu 

b , Dong Liang 

c , ∗, Mingkai Chen 

d 

a College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210 0 03, China 
b Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada 
c College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
d Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210 0 03, 

China 

a r t i c l e i n f o 

Article history: 

Received 20 March 2018 

Revised 7 September 2018 

Accepted 9 November 2018 

Available online 10 November 2018 

Keywords: 

Sparse representation 

Visual tracking 

Multi-view learning 

Dual group structure 

a b s t r a c t 

The multi-view sparse representation based visual tracking has attracted increasing attention because the 

sparse representations of different object features can complement with each other. Since the robustness 

of different object features is actually not the same in challenging video sequences, it may contain unre- 

liable features (the features with low robustness) in multi-view sparse representation. In this case, how 

to highlight the useful information of unreliable features for proper multi-feature fusion has become a 

tough work. To solve this problem, we propose a multi-view discriminant sparse representation method 

for robust visual tracking, in which we firstly divide the multi-view observations into different groups, 

and then estimate the sparse representations of multi-view group projections for calculating the obser- 

vation likelihood. The advantages of the proposed sparse representation method are two-folds: 1) It can 

properly fuse the observation groups with reliable and unreliable features by using an online updated 

discriminant matrix to explore the group similarity in multi-feature space. 2) It introduces a nonlocal 

regularizer to enforce the spatial smoothness among the sparse representations of different group projec- 

tions, which can enhance the robustness of multi-view sparse representation. Experimental results show 

that our method can achieve a better tracking performance than state-of-the-art tracking methods do. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the rapid development of multimedia and internet of

hings [1–3] , there is a pressing demand for intelligent video tech-

ology such as visual tracking. A typical tracking algorithm in-

ludes a motion model and an observation model. The motion

odel aims to track the state of moving target, and the obser-

ation model evaluates the likelihood of each target observation

o select the best one for the current frame. Designing the obser-

ation model is a piece of tough work in visual tracking because

he target appearance often changes dramatically under occlusion,

ackground clutter or illumination change etc. To overcome those

hallenges, lots of works have been done recently. According to dif-

erent observation models, existing visual tracking algorithms can

e categorized into discriminative trackers and generative track-

rs. The discriminative trackers cast the target tracking as a bi-

ary classification problem to distinguish the tracked target from
∗ Corresponding author. 
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he video background. The state-of-the-art methods on discrimina-

ive trackers include support vector machine based methods [4,5] ,

nline boosting [6–8] , multiple instance learning based methods

9,10] , compressed tracker [11] and correlation filter based methods

12,13] etc. The generative trackers typically search for an image

egion that best matches the object appearance. Recent effort s in

his domain include subspace learning based tracking [14–16] , ma-

rix decomposition based tracking [17–19] and sparse representa-

ion based tracking [20] etc. Besides aforementioned observation

odels, the deep leaning based trackers [21–23] have attracted

ore attention due to the ability of nonlinear representation. The

racking performance of those methods often relies on a tedious

ff-line pre-training with tremendous amount of labeled training

amples, thus the performance is sensitive to the choice of train-

ng samples and tends to be overfitting in the presence of label

oise. In real world visual tracking, we may have a small number

f labeled training samples or even only have non-labeled samples.

n this case, how to achieve a robust visual tracking is worth giving

he careful consideration. 

Among existing generative trackers, sparse representation based

isual tracking is the one that can use non-labeled samples to

https://doi.org/10.1016/j.patcog.2018.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.11.005&domain=pdf
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Fig. 1. An example of multi-views in visual tracking. 
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achieve visual tracking. Using sparse representation for visual

tracking was first proposed by Mei [24] , where the likelihood of

target observation was evaluated through solving a series of reg-

ularized least square problems. Since this algorithm estimates the

sparse representations of different particle observations separately,

it ignores the particle relationships and makes the tracker prone

to drift away. Although a lot of works [25–30] have been done to

improve the performance of Mei’s algorithm, those trackers may

drift away from the target in long term video sequences because

they only use pixel intensity to model the target appearance. The

pixel intensity is robust to particle occlusion but sensitive to the

shape deformation of moving target and illumination change. In

computer vision, multi-view refers to different f eature subsets used

to represent particular characteristics of an object (see Fig. 1 ).

Based on this concept, Hong et al. [31] proposed a multi-view

based multi-task sparse representation method for visual track-

ing, in which different features can complement with each other

to give better tracking performance as compared to single feature

based tracking methods. The method in [31] was derived based

on the assumption that all the features can work well in visual

tracking. However, it may not be valid in the video sequences with

severe occlusion because some feature observations, such as tex-

ture, are prone to be disturbed by occlusion or video noise. In fact,

the robustness of a moving object feature can be varied by dif-

ferent kinds of appearance variations. For example, the histogram

is robust to local distortion, but sensitive to background clutter.

Those features with low robustness can be regarded as unreli-

able features due to the fact that they cannot be well represented

by the corresponding feature dictionary. Fusing unreliable feature

with high sparse representation error may degrade the tracking

performance in challenging video sequences. Similar to Hong’s al-

gorithm, Hu et al. [32] also used multi-task multi-view sparse rep-

resentation to model the target appearance. Since this algorithm

could not discriminate the reliable and unreliable features during

sparse representation, it may reduce the robustness of sparse rep-

resentation results. To overcome the limitations in [31] and [32] ,

Lan [33] proposed a multi-view based method to adaptively detect

unreliable features and remove them during sparse representation.

In fact, unreliable feature contains useful complementary informa-

tion, and if used properly, it would enhance the tracking perfor-

mance. 

As aforementioned introduction, the key point in multi-view

sparse representation based visual tracking is to properly fuse

multi-view observations during sparse representation, which is a

piece of tough work due to the following two challenges: (1) the

unreliable views may disturb the fusing results, (2) it is clearly

shown in Fig. 1 that there exist not only the potential similarity

but also a large gap between different kinds of views. Exploiting

the so called potential similarity can facilitate multi-view fusing.

However, how to explore this similarity under multi-view gap is

still an open problem. 

Existing works such as Lan et al. [33] only focus on reducing

the negative effect of unreliable views. As far as we know, there

are few works that can simultaneously overcome two challenges

in multi-view fusing. In this paper, we propose a multi-view dis-
riminant learning based sparse representation method for robust

isual tracking. Different from traditional multi-view sparse repre-

entation based tracking methods that directly use the sparse rep-

esentations of multi-view observations to calculate the observa-

ion likelihood, our method firstly divides the multi-view observa-

ions into different groups, and then estimates the sparse represen-

ations of multi-view group projections for calculating the obser-

ation likelihood. Since the correlations between different observa-

ions of each view can be varied by the appearance variation, some

bservations may be very similar [34] . Dividing the multi-view ob-

ervations into different groups and introducing group projections

n sparse representation enable us to use multi-view learning to

imultaneously exploit the group similarity in the same and differ-

nt views, which can avoid the uncorrelated observation destroy-

ng the common sparsity and highlight the useful information in

he unreliable observation groups (the observation groups with un-

eliable views). 

The main contributions of this paper are summarized as fol-

ows: 

1) We first propose a multi-view discriminant learning based

sparse representation method to explore group similarity in the

multi-feature space, which is then incorporated into a particle

filter based framework to achieve robust visual tracking. The

proposed method makes use of unreliable observation groups

to achieve multi-view fusion and makes different observation

groups more group discriminative. 

2) In our sparse representation method, we propose a nonlocal

regularizer to guarantee a robust tracking performance in se-

vere object occlusion, pose variation etc. The nonlocal regu-

larizer can simultaneously exploit both local and nonlocal re-

lations among the sparse representations of group projections,

enhancing the inherent consensus in different views. 

3) We propose an adaptive alternating direction algorithm to solve

the optimization problem involved in the proposed sparse rep-

resentation method. The new reconstruction method can adap-

tively update the penalty parameter to achieve a fast conver-

gence. 

It is worth mentioning that in our previous work [35] , the

ulti-view discriminant learning is introduced in the sparse rep-

esentation model for the first time. The main differences between

his paper and [35] are summarized as follows: Firstly, the sparse

epresentation method in [35] only uses l 2, 1 norm to constrain the

parse representation result, which may reduce the robustness of

parse representation because the reliable and unreliable view ob-

ervations may not share the common sparse pattern when facing

evere appearance variation. In this paper, we propose a nonlocal

egularizer to enforce spatial smoothness among the sparse repre-

entations of different group projections, which can eliminate the

egative effect caused by the sparse representations of the unreli-

ble observations. Secondly, introducing the nonlocal regularizer in

he multi-view sparse representation makes the optimization prob-

em more complex. The reconstruction method in [35] cannot be

irectly used to solve this optimization problem. Here, we propose

n adaptive alternating direction algorithm to solve this problem

ith fast convergence. Finally, we theoretically analyze the con-

ergence of the proposed reconstruction method and increase the

umber of testing sequences for a thorough evaluation of the pro-

osed tracking method. 

This paper is organized as follows: in Section 2 , we discuss

he key problem in designing the sparse representation model.

ection 3 illustrates our proposed sparse representation model in

etail. Section 4 introduces how to use the proposed sparse rep-

esentation model to achieve visual tracking. Experimental results

nd conclusions are presented in Sections 5 and 6 , respectively. 
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Fig. 2. The observation group similarity in different views. 
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. Problem formulation 

In this paper, multi-view refers to multiple features, e.g. color,

hape and texture, that are used to represent a moving target. The

iews which do not work well during sparse representation are

egarded as unreliable views. The multi-view sparse representa-

ion based visual tracking aims to use the sparse representation

esults to estimate the likelihood of multi-view observations. In

his method, the tracking performance relies on the design of the

parse representation model. Here, suppose Y 

k = [ y k 
1 
, y k 

2 
, . . . , y k n ]

(k = 1 , 2 , . . . , m ) denotes the observation matrix in the k -th view,

here each column y k 
i 

means the i -th observation vector. Tradi-

ional multi-view based sparse representation model can be de-

cribed as [32] 

in 

�

1 

2 

m ∑ 

k =1 

‖ Y 

k − A 

k �k ‖ 

2 
F + λ‖ �‖ 2 , 1 , (1)

here A 

k denotes the target template matrix in the k -th view.

roblem (1) is aimed to seek the sparse representation matrix of

 

k . The drawbacks of problem (1) are two-folds: (1) It cannot dis-

riminate the contributions of multi-view observations because it

ses the same weight for the sparse representation errors of differ-

nt view observations. The unreliable views may give a high sparse

epresentation error, thus causing a tracking drift in challenging

ideo sequences. (2) It assumes that the columns in Y 

k are highly

orrelated, hence the sparsity in � is constrained by l 2, 1 norm.

his assumption may not be valid in challenging video sequences

ecause the vectors in Y 

k are easily disturbed by appearance vari-

tion. If some vectors are disturbed seriously, they are not highly

orrelated with adjacent vectors. In this case, only using l 2, 1 norm

o constrain � may give a poor sparse representation result. 

Different from [32] , we firstly divide n vectors in Y 

k into c

roups, i.e. Y 

k = [ y k 
1 
, y k 

2 
, . . . , y k n ] = [ Y 

k 
1 , Y 

k 
2 , . . . , Y 

k 
c ] , and then esti-

ate the sparse representations of multi-view observation groups

ointly. Since the correlation between different vectors in matrix

 

k can be varied by appearance variation, dividing Y 

k into c groups

nables us to explore the common sparsity according to the dif-

erence in vector correlation. The key to our sparse representa-

ion method is to exploit the group similarity during the sparse

epresentation for properly fusing the reliable and unreliable ob-

ervation groups. The group similarity is shown in Fig. 2 . We can

ee that the observation groups not only have intra-view similarity,

ut also have inter-view similarity. The intra-view similarity means
hat the observations in the same group and the same view are

ighly correlated, while the inter-view similarity is that the same

bservation groups in different views contain inherent correlation.

ue to the large gap between different views [55] , directly exploit-

ng the aforementioned group similarity is no longer applicable. In-

pired by multi-view discriminant analysis [36] , we use a discrimi-

ant matrix to project multi-view observation groups into a latent

ommon space in which the between-group variations from both

nter-view and intra-view are maximized, while the within-group

ariations from both inter-view and intra-view are minimized. In

his case, the within-group similarity in the unreliable view can be

nhanced, which would highlight the useful information in the un-

eliable observation groups. The multi-view group projections are

enoted as ( P 

k ) T Y 

k 
i , where P 

k is the learned discriminant matrix

or the k -th view, Y 

k 
i ( Y 

k 
i ⊂ Y 

k ) denotes the i -th observation group

n the k -th view. With this consideration, we form the following

parse representation based optimization problem, 

in 

�

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) �k 
i ‖ 

2 
F + λ1 ‖ �‖ 2 , 1 , (2)

here � = [ �1 
1 , . . . , �

k 
i , . . . , �

m 

c ] , with �k 
i =

[ �k 
i ] 1 , [ �

k 
i ] 2 , . . . , [ �

k 
i ] r ] (k = 1 , 2 , . . . , m ; i = 1 , 2 , . . . , c) denot-

ng the sparse representation result of the i -th group projection in

he k -th view, and [ �k 
i ] j ( j = 1 , 2 , . . . , r) being the j -th vector in

atrix �k 
i . Problem (2) aims to estimate the sparse representation

atrix of ( P 

k ) T Y 

k 
i . Compared with (1) , problem (2) can obviously

educe the large sparse representation error caused by unreliable

bservations because ( P 

k ) T Y 

k 
i can maximize the common infor-

ation and minimize the disturbance in multi-view observation

roups. 

Inspired by [36] , to learn the discriminant matrix P 

k (k =
 , 2 , . . . , m ) , the between-group variation from all views should be

aximized while the within-group variation from all views should

e minimized. This means that the trace of within-group scatter

atrix P 

T S P should be as small as possible. Meanwhile, the trace

f between-group scatter matrix P 

T D P should be as large as possi-

le. Based on this observation, the discriminant matrix is learned

y solving following problem: 

in 

P 
T r( P 

T ( S − D ) P ) , (3)

here P = [( P 

1 ) T , ( P 

2 ) T , . . . , ( P 

m ) T ] T with P 

k denoting the dis-

riminant matrix for the particle observations in the k -th view,
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Fig. 3. Illustrate the difference between the multi-view discriminant learning based sparse representation method ( Eq. (4) ) and the nonlocal regularizer penalized multi- 

view sparse representation method ( Eq. (5) ). The sparse representation results of Eq. (4) may have non-sparse pattern, which will cause tracking drift in challenging video 

sequences. The detail of the ellipse is presented in Sections 3.1 and 3.2 . Main contributions in the proposed sparse representation method are highlighted with yellow boxes. 
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matrices S and D are two parameter matrices, which are used to

calculate the within-group variation and the between-group varia-

tion, respectively. Here, we use the particle observations at the first

frame as the training samples for calculating matrices D and S in a

manner similar to that in [36] . 

Based on (2) and (3) , the proposed multi-view discriminant

learning based sparse representation method is formulated as 

min 

�, P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) �k 
i ‖ 

2 
F + λ1 ‖ �‖ 2 , 1 

+ λ2 T r( P 

T ( S − D ) P ) . (4)

Problem (4) integrates multi-view learning and sparse representa-

tion into a unified optimization model, in which, we can simul-

taneously achieve sparse representation and update the discrimi-

nant matrices. The matrix P 

k is updated to explore the potential

commonality between reliable and unreliable observation groups,

making ( P 

k ) T Y 

k 
i 

more group-discriminative in the latent common

space. In this case we can properly fuse multi-view group projec-

tions when estimating the sparse representation of ( P 

k ) T Y 

k 
i 
. In (4) ,

( P 

k ) T A 

k highlights the potential commonality in multi-view tem-

plate matrices. 

3. The nonlocal regularizer penalized multi-view sparse 

representation 

In (4) , the sparse representations of multi-view group pro-

jections are arranged together to form �. As shown in Fig. 3 ,

the multi-view discriminant learning based sparse representation

method ( Eq. (4) ) may not guarantee the sparsity of multi-view

sparse representation in challenging video sequences because it
nly uses l 2, 1 norm to constrain the sparsity of �, making the

parse representations of unreliable observation groups may not

hare the same sparse pattern with that of reliable observation

roups. To enforce the common sparsity in �, we propose to use

 nonlocal regularizer in multi-view discriminant learning based

parse representation. The proposed regularizer can exploit the in-

erent similarity in the sparse representations of different group

rojections. Thus, we can enforce the spatial smoothness among

he multi-view sparse representation results. The nonlocal regular-

zer penalized multi-view sparse representation is then formulated

s 

in 

�, P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) �k 
i ‖ 

2 
F + λ1 g(�) 

+ λ2 ‖ �‖ 2 , 1 + λ3 T r( P 

T ( S − D ) P ) , (5)

here g ( �) is the nonlocal regularizer, which is employed to en-

orce spatial smoothness among the sparse representations of dif-

erent group projections. The concrete expression of g ( �) will be

erived in the next section. 

.1. The nonlocal regularizer 

In (5) , � = [ �1 
1 , . . . , �

k 
i , . . . , �

m 

c ] , where �k 
i = [[ �k 

i ] 1 , [ �
k 
i ] 2

 . . . , [ �k 
i ] r ] (i = 1 , 2 , . . . , c; k = 1 , 2 , . . . , m ) . For notational simplic-

ty, in this subsection, � is rewritten as � = [ θ1 , θ2 , . . . , θmcr ] ,

here θi denotes the i -th vector in matrix �. The proposed reg-

larizer g ( �) is defined as 

(�) = 

∑ 

θi ∈ �

∑ 

θ j ∈ N θ

φ(‖ P ( θi ) − P ( θ j ) ‖ F ) , (6)
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Fig. 4. The graph regularizer versus the proposed nonlocal regularizer. (a) The proposed nonlocal regularizer, (b) The graph regularizer. 
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here φ( · ) is the robust distance operator, which, for a scalar x , is

efined as φ(x ) = σ (1 − e −
x 2 

σ ) , N θ denotes the searching window,

 ( θi ) (or P ( θj )) is an operator which is introduced to select adjacent

lements centered at θi i.e. P ( θi ) = [ θi −u , . . . , θi −1 , θi , θi +1 , . . . , θi + u ] .
ifferent from graph regularizer [26] , here we introduce the oper-

tor P ( θi ) in (6) for solving the MMV based inverse problem, which

an make g ( �) not only exploit the nonlocal similarity of �, but

lso consider the local interdependence in adjacent sparse repre-

entation results. The intuitive difference between the graph reg-

larizer and our nonlocal regularizer is shown in Fig. 4 . We can

ee that our regularizer adds the robustness of the sparse repre-

entation because it exploits the relationship between a group of

djacent vectors in θi and the corresponding vectors in θj . On the

ther hand, the graph regularizer can only exploit the relationship

etween vector θi and θj . Note that calculating g ( �) in (6) is NP-

ard due to its nonconvex nature. Inspired by [37] , we use Ma-

orize Minimize (MM) algorithm [38] to simplify (6) . First, we have

(‖ P ( θi ) − P ( θ j ) ‖ F ) ≤ s (i, j) ‖ P ( θi ) − P ( θ j ) ‖ 

2 
F + b, (7)

here 

 (i, j) = 

φ′ (‖ P ( θi ) − P ( θ j ) ‖ F ) 

2 ‖ P ( θi ) − P ( θ j ) ‖ F 

(8) 

s a nonlinear function for measuring the similarity between θi and

j . As parameter b in (7) is a constant, we can ignore it in the

ptimization process. Taking (7) into (6) , we can obtain 

(�) ≤
∑ 

θi ∈ �

∑ 

θ j ∈ N θ

s (i, j) ‖ P ( θi ) − P ( θ j ) ‖ 

2 
F . (9)

ote that Eq. (9) involves a weighted Frobenius norm for calculat-

ng patch differences. Suppose there is a matrix F = [ f 1 , f 2 , . . . , f n ] ,

 F ‖ 2 
F 

= 

∑ n 
i =1 ‖ f i ‖ 2 2 

. Based on the above definition, Eq. (9) can be

ewritten as the weighted sum of vector differences, i.e., 

(�) ≤
∑ 

θi ∈ �

∑ 

θ j ∈ N θ

s (i, j) 
u ∑ 

a = −u 

‖ θi + a − θ j+ a ‖ 

2 
2 

= 

u ∑ 

a = −u 

∑ 

θi + a 

∑ 

θ j+ a 

s (i, j) ‖ θi + a − θ j+ a ‖ 

2 
2 

≤
∑ 

θi ∈ �

∑ 

θ j ∈ N θ

ω i j ‖ θi − θ j ‖ 

2 
2 , (10) 

ith 
 i j = 

u ∑ 

a = −u 

s (i − a, j − a ) , (11)

or ∀ θi ∈ � and ∀ θj ∈ N θ , we have θi + a ∈ � and θ j+ a ∈ N θ .

hrough variable substitution, we can obtain the final result in

10) , where ω ij is calculated as the sum of similarity measure s ( i,

 ) between patch pairs in P ( θi ) and P ( θj ). 

Based on (10) and [39] , g ( �) can be finally relaxed as g(�) ≤
 r(�L �T ) , where L is the Laplacian matrix. The difference be-

ween our Laplacian matrix and the Laplacian matrix in [39] is that

he weight ω ij in our method is used to measure the similarity of

he sparse representation results. Hence our Laplacian matrix can

nforce the spatial smoothness among the sparse representations

f different group projections. The Laplacian matrix in [39] is used

o measure the similarity between different training data, which

an highlight the difference between different classes. 

Substituting T r(�L �T ) for g ( �) in Eq. (5) , we can rewrite

he nonlocal regularizer penalized multi-view sparse representa-

ion as 

in 

�, P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) �k 
i ‖ 

2 
F + λ1 T r(�L �T ) 

+ λ2 ‖ �‖ 2 , 1 + λ3 T r( P 

T ( S − D ) P ) . (12) 

ow problem (12) is a tractable problem which will be solved in

he next section. 

.2. The reconstruction algorithm 

Here, we will present the detailed reconstruction algorithm for

he nonlocal regularizer penalized multi-view sparse representa-

ion in Fig. 3 . Problem (12) is a non-constrained problem, and di-

ectly solving this problem using Accelerated Proximal Gradient

APG) algorithm [34] will slow down the convergence speed. Al-

ernating Direction Method of Multipliers (ADMM) algorithm can

ive a faster convergence rate than APG algorithm [41] , however, it

lways involves high computational complexity. To overcome the

imitation of above algorithms, we propose an adaptive ADMM al-

orithm to solve problem (12), in which, we firstly use variable

plitting method [40] to rewrite (12) as follows 

min 

, U , Z , P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) Z 

k 
i ‖ 

2 
F 

+ λ1 T r( U L U 

T ) + λ2 ‖ �‖ 2 , 1 + λ3 T r( P 

T ( S − D ) P ) . 

s.t. Z = �, U = Z (13) 
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Reformulating (12) to (13) is aimed to change a difficult prob-

lem into a decomposable easy problem. After changing (12) into

(13), we secondly merge the two constraints in (13) into a linear

constraint and obtain 

min 

�, U , Z , P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) Z 

k 
i ‖ 

2 
F 

+ λ1 T r( U L U 

T ) + λ2 ‖ �‖ 2 , 1 + λ3 T r( P 

T ( S − D ) P ) , 

s.t. B( U ) + C( Z ) = D(�) (14)

where B, C and D: R m × n → R 2 m × 2 n are linear operators which are

defined as 

B( U ) = 

(
0 0 

0 U 

)
, C( Z ) = 

(
Z 0 

0 −Z , 

)
, 

D(�) = 

(
� 0 

0 0 

)
(15)

where element 0 in (15) is a zero matrix of the same size as �,

U and Z . Compared with (13) , problem (14) can deal with all the

constraints together to reduce the computational complexity. 

Finally, we propose to use Augmented Lagrange method to solve

problem (14). The flow chart of the Augmented Lagrange method

is shown in Algorithm 1 , and the detailed mathematical deduc-

Algorithm 1 Augmented Lagrange Method for Solving Problem

([14]). 

Input: Y 

t 
i 
, A 

t , λ1 , λ2 and λ3 

Output: �, P 

Initialize: t = 0 , �0 = V 

0 = Z 

0 = U 

0 = 0 , P = 0 

while ‖ �t+1 − �t ‖ 2 F > 10 −5 do 

1. Using augmented Lagrange function to change (13) into a non-

constraint problem. 

2. P -step 

Updating P 

t+1 by solving D 

−1 S ′ P = λ3 P . 

3. �-step 

Updating �t+1 = �λ2 
βt 

( Z 

t + 

λ2 
βt �

t 
11 

) 

4. Z -step 

Updating Z 

t+1 = τ (− 1 
βt �

t 
11 

+ �t+1 + U 

t + 

1 
βt �

t 
22 

+ 

1 
ηβt V 

t − η 

F ( V 

t )) . 

5. U -step 

Updating U 

t+1 = ( I + 

βt 

λ1 
L ) −1 ( Z 

t+1 − 1 
βt �

t 
22 

) 

6. V 

t+1 = Z 

t+1 + η( Z 

t+1 − Z 

t ) 

7. �t+1 = �t + βt (B( U 

t+1 ) + C( Z 

t+1 ) − D(�t+1 )) 

8. Updating Laplacian matrix L 

9. βt+1 = min (βmax , ρβt ) 

10. t ← − t + 1 

end while 

tion for Algorithm 1 is shown in Appendix A . The advantage of

Algorithm 1 is that we introduce the adjoint operators B ∗ and C ∗

in Z-step and U-step , respectively, to simplify the process of sparse

coefficients estimation. 

3.3. Convergence and computational complexity analysis 

Problem (14) is a convex but non-smooth problem. It is difficult

to rigorously prove the convergence of the proposed Augmented

Lagrange method. Convergence analysis of a general convex but

non-smooth problem has been given in Tao and Yuan [43] , where

it is stated that if the Lagrange function is bounded, the Augment

Lagrange Multiplier based reconstruction method can give a feasi-

ble solution. Based on [43] , we have proved that the augmented

Lagrange function of (14) is bounded in Appendix C , which can
heoretically illustrate that Algorithm 1 is guaranteed to yield a

easible projection and sparse representation matrices. The com-

utational complexity of each iteration in Algorithm 1 is mainly

ncurred by step 4, which is O(mcns 2 ) , where n is the number of

ows in matrix P , s is the particle number of an observation group,

 is the number of views and c is the number of observation

roups in each view. In comparison, the computational complexity

or solving the sparse representation method in [31] is O(2 mu v 2 )
 u is the original dimension of observation matrix, u > = n, v is the

article number of undivided observation matrix), and the com-

lexity of multi-task tracker [26] is O(u v d) ( d is the number of

olumns in template matrix). As a concrete example, if the num-

er of views is 3, the group number is 8, the particle number

ithout any division is 400, then the computational complexity of

ur method is in the order of 10 5 , which is much lower than that

equired by [31] ( O(2 mu v 2 ) ≈ 10 7 ). It is also lower than that re-

orted in [26] where d > u , and O(u v d) ≈ 10 6 . 

.4. Discussion 

The proposed nonlocal regularizer penalized multi-view sparse

epresentation method is closely related to the state-of-the-art

racking methods [31] , [32] and [34] . Here, we will further discuss

he difference between our method and those related works. 

Difference from the work in [34] : In particle filter based vi-

ual tracking framework, the correlation between different particle

bservations are actually not the same, some observations may be

ery similar. Based on this observation, both [34] and our work di-

ide particle observations into different groups for visual tracking.

owever, [34] explores group similarity in one view, while we pro-

osed to explore the group similarity in the multi-feature space.

xploring the group similarity in multi-feature space is a chal-

enging task because it not only requires to maximize the intra-

roup similarity in a certain view, but also requires to make sure

hat the same observation groups in different views can highlight

heir inherent commonality. For this purpose, our proposed sparse

epresentation method (equation (12)) uses multi-view discrimi-

ant learning to simultaneously explore the intra-view and the

nter-view similarity, which can guarantee that similar observation

roups have similar sparse representation results. 

Difference from the works in [31] and [32] : [31] , [32] and our

ork are all to minimize the sum of the multi-view sparse rep-

esentation errors to make different views complement with each

ther. In fact, [31] and [32] may not obtain the minimal sum of the

ulti-view sparse representation errors because they could not ef-

ectively resist the high sparse representation errors caused by un-

eliable views. Different from [31] and [32] that directly use multi-

iew observations to achieve sparse representation, we firstly di-

ide multi-view observations into different groups, and then use

he group projections to achieve sparse representation. The group

rojections are obtained by using the online updated projection

atrices to project observation groups into a common subspace.

ince the projection matrices are updated through exploring the

ulti-view group similarity, they can enforce the within-group

imilarity in the unreliable view. Based on this advantage, intro-

ucing group projections in multi-view sparse representation can

ighlight the useful complementary information of different ob-

ervation groups. This means that the disturbance in unreliable

bservation groups can be reduced, which is good for minimiz-

ng the sparse representation errors of unreliable views. Moreover,

he nonlocal regularizer in (12) can enforce the spatial smoothness

mong multi-view sparse representation results, which can further

educe the sparse representation errors of multi-view group pro-

ections. 
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. Visual tracking framework 

Here, we employ our proposed sparse representation method to

chieve visual tracking. In this paper, the moving object is tracked

nder a particle filter framework, which mainly consists of two

arts: the first part is to sample particles to generate multi-view

bservations using the particle filter method. The second part cal-

ulates the posterior probability of different particle samples us-

ng the sparse represent results from Algorithm 1 . In the parti-

le filter method, the state vector of a moving target at time t is

enoted as x t ∈ R h , and the observations of the state vector from

ime 1 to t are denoted as Y 

t = { y 1 , y 2 , . . . , y t } . Using the Bayes

ule, the posterior probability p( x t |Y 

t ) is calculated as p( x t |Y 

t ) ∝
p( y t | x t ) ∫ [ p( x t | x t−1 ) p( x t−1 |Y 

t−1 )] d x t−1 , where p( y t | x t ) is the ob-

ervation likelihood and p( x t | x t−1 ) denotes the motion model. As

t is very difficult to calculate p( x t |Y 

t ) directly using the aforemen-

ioned formula, the posterior probability is instead approximated

y p( x t |Y 

t ) = 

∑ n 
j=1 ω 

t 
j 
δ( x t − x t 

j 
) , where δ is the Dirac measure, x t 

j 

s the j -th sampled particle at time t , and ω 

t 
j 

is the particle im-

ortance weight, which is updated by ω 

t 
j 
= ω 

t−1 
j 

p( y t | x t 
j 
) . Based on

article filter method, we use three features, namely intensity, tex-

ure and edge to represent Y 

t for generating Y 

k (k = 1 , 2 , 3) . To cal-

ulate p( x t |Y 

t ) , the key is to compute p( y t | x t 
j 
) . 

At time t , suppose we have obtained the three-view observa-

ion matrices Y 

1 
, Y 

2 and Y 

3 using aforementioned particle filter

ethod. Firstly, we divide each observation matrix into different

ub-matrices (groups) by online k -means method [34] . Choosing

nline k -means because it can only use a newly arrived state vec-

or to update the cluster centroid, we can avoid time-consuming

e-clustering. To enhance the clustering performance, similar to

34] , we use ν = [ u, v , q 

T ] T as state vector for observation cluster-

ng, which is robust to image noise and can make different obser-

ations more group-discriminative. In ν = [ u, v , q 

T ] T , [ u, v ] is the

arget coordinate and q 

T is the target appearance of multi-views.

n visual tracking, the cluster centroid is online updated by 

new 

c = μc + ξ ( ν − μc ) (16) 

here μc means the cluster centroid in the c -th group, ν is the

ewly arrived state vector and ξ is the learning rate. 

After the observation grouping process, secondly, we esti-

ate � = [ �1 
1 , . . . , �

k 
i , . . . , �

3 
c ] (k = 1 , 2 , 3 ; i = 1 , 2 , . . . , c) by using

lgorithm 1 to solve problem (14). When obtaining �, we then

alculate the sparse representation errors of different observation

roups. The i -th observation group error is calculated as 

 (i ) = 

3 ∑ 

k =1 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) �k 
i ‖ 

2 
F , i = 1 , 2 , . . . , c (17)

Next, based on e ( i ), we select an observation group with min-

mum sparse representation error to achieve observation likeli-

ood estimation. Suppose the 1-th observation group has mini-

um sparse representation error, hence, the observation likelihood

p( y t | x t 
j 
) is calculated by 

p( y t | x 

t 
j ) = 

1 

�
exp(−α

3 ∑ 

k =1 

‖ ( P 

k ) T [ Y 

k 
1 ] j − ( P 

k ) T A 

k [ �k 
1 ] j ‖ 

2 
2 ) , (18)

here [ Y 

k 
1 
] j ( j = 1 , 2 , . . . , r) means the j -th particle observation

ector in the observation group Y 

k 
1 

and [ �k 
1 
] j is the correspond-

ng sparse representation result. After calculating p( y t | x t 
j 
) , the fi-

al optimal tracking result for the t -th frame is calculated as x̄ t =∑ r 
j=1 ω 

t 
j 
x t 

j ∑ r 
j=1 ω 

t 
j 

, where ω 

t 
j 

is the particle weight of the j -th particle obser- 

ation. Since the proposed sparse representation method can use

ulti-view discriminant analysis to make ( P 

k ) T Y 

k 
i 

group discrimi-
ative and highlight the useful information in unreliable observa-

ion groups, we can give an exact estimation for e ( i ) and p( y t | x t 
j 
) . 

. Experiments 

In this section, we use the video sequences in CVPR2013 Vi-

ual Tracking Benchmark [44] to evaluate the performance of

ur proposed visual tracking algorithm. These video sequences

re very challenging in the sense that they contain many ad-

erse factors against visual tracking such as fast motion, large

ariation in pose and scale, occlusion and non-rigid object de-

ormation etc. We compare the proposed tracking algorithm with

2 state-of-the-art methods: IVT [14] , CT [11] , l1-APG [25] , MTT [26] ,

RT [17] , STRUCK [45] , CSK [46] , TLD [47] , Frag [4 8] , KMS [4 9] , OAB [50]

nd KCF [12] . Since our method and the existing ones like the

1-APG and MTT are all particle filter based sparse representa-

ion algorithms, the particle number is set equally as 400. To

llustrate the effectiveness of the projection matrix P 

k and the

onlocal regularizer g ( �) in the proposed sparse representation

ethod, we compare equations (1) , (4) and (12) in our paper. Us-

ng Eq. (1) to achieve visual tracking is the multi-view sparse rep-

esentation method without projection matrix and nonlocal regu-

arizer. Eq. (4) is the multi-view discriminant learning based sparse

epresentation method, which introduces projection matrix in the

ulti-view sparse representation. Finally, Eq. (12) is the nonlocal

egularizer penalized multi-view sparse representation method to

rack moving object, which adds both projection matrix and the

onlocal regularizer into the sparse representation. For notational

implicity, we name the multi-view sparse representation method

ithout projection matrix and nonlocal regularizer, the multi-view

iscriminant learning based sparse representation method [35] and

he nonlocal regularizer penalized multi-view sparse representa-

ion method as MVSR , MVDLSR , and NR-MVDLSR , respectively. 

Experimental setting : In our experiments, we use three com-

lementary features to achieve visual tracking, which are inten-

ity, local binary patterns (LBP) [51] and edges with canny oper-

tor. The target template matrices in three views have the same

ize, where A 

i ∈ R 256 × 20 (i = 1 , 2 , 3) . In these template matrices,

he particle observation size is 16 × 16 , and the number of tar-

et templates is 20 (10 for foreground templates and 10 for back-

round templates). Currently, the demo code is available at the URL

ttps://github.com/greatisgood123/MVDLSR. 

.1. Evaluation of cluster number 

In this test, we choose a challenging video sequence called trel-

is to evaluate the relationship between the group number and the

racking performance. Choosing this sequence is because the tar-

et occupies a large space in video sequence, which can indicate

he difference of tracking performance more clearly. In the experi-

ent, we directly use online k -means [34] on multi-view observa-

ions to achieve group division without using any additional train-

ng process. During group division, we evaluate tracking perfor-

ance with varying group number. From Fig. 5 we see that the

roposed sparse representation method can give the best track-

ng performance when the particle observation is divided into 8

roups. If the group number is less than 8, some dissimilar parti-

le samples may be involved in the particle observation groups and

hare a similar sparsity pattern with similar samples, thus degrad-

ng the tracking performance. If the group number is larger than 8,

hose similar particle samples cannot be grouped together, which

ould also degrade the tracking performance. 
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Table 1 

FPS performance for different methods. 

Tracker NR-MVDLSR IVT CT CSK L1-APG MTT Frag KMS STRUCK TLD OAB KCF 

Compiler matlab matlab matlab matlab C matlab C ++ matlab C ++ matlab matlab matlab 

FPS 1.1 10.2 13.3 85.1 13.2 0.3 2.2 4.6 0.12 12.6 16.0 30.2 

Table 2 

FPS performance for different spare representation based trackers. 

Tracker NR-MVDLSR MVDLSR LRT [17] MTMVT [31] DGSP [34] JSRFFT [33] 

Compiler matlab matlab matlab matlab matlab matlab 

FPS 1.1 1.2 0.6 1.0 0.2 0.7 

2 4 6 8 10 12
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Fig. 5. Average overlap rate performance with varying candidate group numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

FPS performance with differnet η value. 

η 0.001 0.005 0.01 0.05 0.1 0.5 

FPS 0.4 0.6 1.1 NaN NaN NaN 

Table 4 

λ3 = 0 . 1 . 

λ1 

λ2 0.1 0.15 0.2 

0.1 0.67 0.67 0.68 

0.5 0.72 0.73 0.60 

1 0.75 0.68 0.71 

Table 5 

λ3 = 0 . 5 . 

λ1 

λ2 0.1 0.15 0.2 

0.1 0.71 0.69 0.60 

0.5 0.67 0.69 0.63 

1 0.70 0.68 0.71 
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5.2. Runtime performance 

To illustrate the computational complexity of the proposed NR-

MVDLSR method, we test the average tracking speed (Frame num

per Second, FPS) on a laptop with Inter(R) Core(TM) i3-2310M CPU

@ 2.10 Hz (2GB RAM) (see Table 1 ), where different methods are

all implemented on 30 video sequences. 

To further illustrate the computational complexity of MVDLSR

and NR-MVDLSR methods, we compare them with four well-

known sparse representation methods. The testing result is shown

in Table 2 . From Tables 1 and 2 , we can see that although NR-

MVDLSR introduces multi-view learning and non-local regularizer

in sparse representation to achieve visual tracking, its computa-

tional complexity is similar to traditional sparse representation

based tracking methods. 

5.3. Parameter analysis 

There are four parameters η, λ1 , λ2 , λ3 that require to be set in

Algorithm 1 . Inspired by [17] , we randomly choose 10 challenging

video sequences to select the optimal combination of four param-

eters according to the parameter sensitivity analysis. The detailed

parameter analysis is discussed in the following. 

Evaluation of η: The learning step parameter η controls the

convergence rate of reconstruction algorithm. This parameter is

not related to λ1 , λ2 and λ3 . If the value of η is too small, the

convergence speed would be slow. If the value of η is too large,

it may cause vibration and no convergence. Inspired by parame-

ter sensitivity analysis [17] , to choose the value for η, we first fix

λ1 , λ2 and λ3 , and then test the running speed of reconstruction

algorithm with different η values. The testing result is shown in
able 3 , where NaN means the reconstruction method is not con-

ergent, and FPS means the tracking speed (Frames per Second).

rom Table 3 we could see that with the increase of parameter η,

he FPS is gradually increased. When the value of η is larger than

.01, the reconstruction method will not get convergent, thus lead-

ng to an inoperative tracking result. Based on Table 3 , we empiri-

ally set η = 0 . 01 for all the experiments. 

Evaluation of λ1 , λ2 and λ3 : In our proposed sparse repre-

entation model, λ1 and λ2 are two important parameters which

ontrol the smoothness and the sparsity of the sparse representa-

ion result, respectively. On one hand, if λ1 and λ2 are too large,

t may cause over-smoothing and over-sparsity. On the other hand,

f both are small, the sparse representation result will suffer un-

esired sparse pattern, resulting in the poor tracking performance.

esides λ1 and λ2 , λ3 is also critical for the proposed sparse rep-

esentation model, which measures the contribution of multi-view

iscriminant learning. To find an optimal combination of three pa-

ameters, we firstly fix λ3 = 0 . 1 , and then calculate the average

verlap rate over 10 video sequences with different combinations

f λ1 and λ2 . The value of λ1 is selected from a predefined discrete

et �1 = { 0 . 1 , 0 . 5 , 1 } . The λ2 is selected from �2 = { 0 . 1 , 0 . 15 , 0 . 2 } .
hirdly, we fix λ3 = 0 . 5 and λ3 = 1 , respectively, and re-calculate

he average overlap rate with different combination of λ1 and λ2 .

he average overlap rate with different combinations of λ1 , λ2 

nd λ3 are shown in Tables 4 , 5 and 6 . From these tables, we

an see that the proposed tracking method gives the highest av-

rage overlap rate when λ = 1 , λ = 0 . 1 and λ = 0 . 1 . Hence, we
1 2 3 
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Fig. 6. Average tracking performance over 30 video sequences: (a) Mean value of position error, (b) Mean value of overlap rate. 

Table 6 

λ3 = 1 . 

λ1 

λ2 0.1 0.15 0.2 

0.1 0.65 0.65 0.68 

0.5 0.66 0.65 NaN 

1 0.64 0.64 NaN 
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mpirically set four parameters in Algorithm 1 as η = 0 . 01 , λ1 = 1 ,

2 = 0 . 1 and λ3 = 0 . 1 . 

.4. Quantitative tracking performance 

In this section, we will give the quantitative evaluation over

0 video sequences. The quantitative visual tracking performance

s evaluated by four kinds of objective measures [44] : the posi-

ion error, the overlap rate, the precision plot and the success plot.

he position error is defined as the Euclidean distance between

he central location of the tracked bounding box and the manu-

lly labeled ground truth. The overlap rate is defined as 
area (B T ∩ B G ) 
area (B T ∪ B G ) ,

here B T and B G are the tracked bounding box of each frame and

he corresponding ground truth, respectively. The precision plot

ndicates accumulated position errors under different location er-

or thresholds. The success plot reflects the accumulated successful

ates versus different overlap thresholds, where the successful rate

ounts the number of video frames where the overlap rate is larger

han 0.5. The position error and the overlap rate are the objec-

ive measures to evaluate the tracking performance for each video

rame, while the precision and success plots can illustrate the over-

ll tracking performance. 

Firstly, we test the average tracking performance over 30 video

equences. The average position error and the average overlap rate

f one video frame are denoted as ave p and ave o , respectively. The

ean values of ave p and ave o over 30 video sequences are shown

n Fig. 6 . It is seen from Fig. 6 (a) that the smaller the position er-

or, the higher the tracking accuracy, and the position error of our

roposed NR-MVDLSR is 5.4, which is obviously smaller than other

ethods. This means that our method can still track the moving

arget in all selected video sequences. In Fig. 6 (b), the large value

f overlap rate means the tracker can use a bounding box with

n appropriate scale to track the target. This figure shows that

ur method can give better overlap rate performance than other

ethods. 

These 30 selected sequences contain five adverse factors against

isual tracking such as: occlusion, motion blur, scale variation, il-

umination change and pose variation. Hence, in the next exper-

ment, we divide the test video sequence into 5 groups. The de-

ailed information about the video group is shown in Table 7 . 
Based on Table 7 , we test the mean value of ave p and ave o over

ifferent video groups to illustrate our tracking performance in dif-

erent scenes (see Tables 8 and 9 ). 

From Tables 8 and 9 we can clearly see that the proposed NR-

VDLSR method ranks top two among all trackers. This means

hat our proposed sparse representation model can give the good

racking performance when facing different adverse factors against

isual tracking. The NR-MVDL SR, MVDL SR and MVSR use multi-

eature to achieve visual tracking, hence they can give obviously

ower position error than the single-feature based sparse repre-

entation trackers such as l1-APG and MTT. MVDSL gives a bet-

er tracking performance than MVSR method because it intro-

uces multi-view discriminant learning into the sparse represen-

ation. Since MVDSL only uses l 2, 1 norm to constrain the sparse

epresentations of multi-view observation projections, it may not

uarantee the low position error when facing severe motion blur.

ompared with MVDSL, the proposed NR-MVDLSR method adds

 non-local regularizer into the multi-view discriminant learning

ased sparse representation model to smooth the sparse repre-

entations of multi-view group projections, which can obviously

educe the position error and enhance the overlap rate in chal-

enging video sequences. In visual tracking, KCF is a well-known

racking method. Through the comparison with KCF, we can clearly

ee the advantage of NR-MVDLSR. In above experiment, the posi-

ion error performance for motion blur test is not better than that

or other adverse factors because the motion blur will destroy the

nherent correlation between different pixels. Hence it is a tough

ork to overcome this adverse factor. Here, we use Tables 10 and

1 to show the detailed tracking performance of different methods

n motion blur video groups to further illustrate tracking accuracy

f our method. From Tables 10 and 11 we could see that although

ur method could not give the best tracking performance in cross-

ng and duderk sequences, the tracking accuracy of NR-MVDLSR is

imilar to that of KCF. 

Since the precision and success plots are two well-known ob-

ective measures for testing the overall tracking performance, we

ow adopt these two measures to test our tracking performance

ver 30 video sequences (see Fig. 7 ). In Fig. 7 (a) and (b), the area

nder curve (AUC) of each precision and success plot indicates the

ank of different tracking algorithms. Based on this observation, we

an clearly see that the NR-MVDLSR method ranks first on the suc-

ess and precision plots. 

.5. Qualitative tracking performance 

In this section, we select ten challenging sequences to show the

ualitative tracking performance (see Fig. 8 ). The video sequence

electing strategy is that: we randomly select two video sequences

rom each video group. This test can give a direct impression of

he tracking performance when the target facing different adverse

actors. 
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Table 7 

The detail information about the video groups for experiments. 

Adverse factors Video sequence 

Occlusion Faceocc1, Faceocc2, Football, Coke, Subway, Jogging, Lemming 

Motion blur Crossing, Singer2, Jumping, Dudek, Mountainbike, Deer 

Scale variation Car4, Singer1, Walking2, Carscale, Fleetface, Freeman4 

Illumination change Trellis, Skating1, Car11, David Indoor, Fish 

Pose variation Basketball, Shaking, Bolt, Mhyang, Boy, Sylvester 

Table 8 

Mean value of position error over different video groups. The best two results are denoted as bold and italic. 

Seq. 

Meth. NR-MVDLSR MVDLSR MVSR IVT CT CSK l1-APG MTT Frag KMS STRUCK TLD OAB KCF 

Occlusion 5.3 14.8 24.5 34.8 20.1 26.5 41.5 36.9 24.4 33.4 12.6 25.1 20.8 16.6 

Motion blur 7.2 16.4 24.9 67.2 66.8 45.0 46.0 62.6 47.0 27.8 23.9 73.2 35.5 8.7 

Scale variation 5.4 11.6 12.4 14.8 36.5 18.1 17.6 25.0 33.8 41.1 22.5 21.8 29.2 24.1 

Illumination change 5.0 4.9 13.0 18.0 30.4 18.4 23.3 18.8 38.9 20.4 19.0 25.8 23.3 7.7 

Pose variation 4.2 10.5 20.5 42.7 43.7 40.9 64.8 39.8 55.0 25.5 28.0 44.4 66.0 12.7 

Table 9 

Mean value of overlap rate over different video groups. The best two results are denoted as bold and italic. 

Seq. 

Meth. NR-MVDLSR MVDLSR MVSR IVT CT CSK l1-APG MTT Frag KMS STRUCK TLD OAB KCF 

Occlusion 0.72 0.58 0.49 0.41 0.45 0.47 0.31 0.38 0.47 0.30 0.59 0.50 0.42 0.56 

Motion blur 0.67 0.58 0.45 0.34 0.31 0.35 0.36 0.31 0.30 0.41 0.53 0.43 0.41 0.62 

Scale variation 0.74 0.60 0.56 0.54 0.29 0.39 0.43 0.40 0.31 0.22 0.41 0.43 0.29 0.41 

Illumination change 0.77 0.70 0.63 0.52 0.35 0.45 0.34 0.44 0.24 0.33 0.55 0.46 0.41 0.66 

Pose variation 0.72 0.62 0.52 0.28 0.35 0.46 0.24 0.28 0.37 0.41 0.47 0.34 0.35 0.65 

Table 10 

Detailed position error performance over motion blur video group. The best two average results are denoted as bold and italic. 

Seq. 

Meth. NR-MVDLSR MVDLSR MVSR IVT CT CSK l1-APG MTT Frag KMS STRUCK TLD OAB KCF 

Crossing 4.4 5.8 23.8 18.5 3.2 6.7 42.3 30.9 21.3 5.7 3.3 13.8 4.2 2.9 

Singer2 12.1 56.5 71.6 175.9 101.0 104.1 135.4 140.8 58.7 20.9 101.1 253.5 105.8 7.5 

Jumping 4.1 5.6 11.5 38.2 62.6 15.8 24.4 41.2 4.3 47.8 5.9 4.6 58.8 12.8 

Duderk 11.7 12.7 25.7 9.8 16.5 13.7 23.4 14.3 44.6 45.3 17.9 18.7 25.3 10.2 

Mountainbike 5.9 6.5 7.5 8.1 94.2 6.1 13.2 10.3 102.3 30.7 8.7 106.9 9.3 6.2 

Deer 5.1 11.2 9.1 152.6 123.4 123.4 37.4 138.0 51.0 16.1 6.7 41.9 9.7 12.8 

Table 11 

Detailed overlap rate performance over motion blur video group. The best two average results are denoted as bold and italic. 

Seq. 

Meth. NR-MVDLSR MVDLSR MVSR IVT CT CSK l1-APG MTT Frag KMS STRUCK TLD OAB KCF 

Crossing 0.63 0.60 0.24 0.31 0.66 0.49 0.17 0.22 0.29 0.56 0.61 0.43 0.65 0.70 

Singer2 0.55 0.35 0.18 0.04 0.29 0.03 0.04 0.04 0.16 0.28 0.03 0.02 0.02 0.67 

Jumping 0.66 0.58 0.42 0.21 0.04 0.17 0.36 0.20 0.61 0.10 0.58 0.65 0.08 0.28 

Dudek 0.68 0.65 0.49 0.72 0.63 0.69 0.52 0.66 0.51 0.51 0.61 0.61 0.49 0.72 

Mountainbike 0.75 0.72 0.71 0.70 0.18 0.69 0.64 0.67 0.12 0.48 0.66 0.26 0.62 0.71 

Deer 0.72 0.59 0.65 0.03 0.03 0.04 0.41 0.04 0.08 0.52 0.66 0.58 0.62 0.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Occlusion: In Fig. 8 (a), the faceocc1 sequence is used to test

the tracking performance under occlusion. In this sequence, a

woman’s face undergoes the partial and severe occlusion by a

book. From the tracking performance of different methods we

can see that OAB method is not robust to face occlusion. Our

method can still give an exact tracking result in the entire video

sequence. Besides faceocc1 sequence, Fig. 8 (b) gives a test on

jogging video sequence. This sequence is challenging because

the runner is totally occluded by a lamppost. From the tracking

results we can see that most tracking methods begin to drift

at 181-th frame because the runner suffers a total occlusion af-

ter this frame. Clearly, NR-MVDLSR, OAB, TLD and Frag meth-
ods are robust to this kind of occlusion. Since MVDLSR method 
only uses l 2, 1 norm to regularize the sparse representations of

multi-view observation projections, it could not give an exact

tracking performance in jogging sequence. 

2) Motion blur: Motion blur means the target region is blurred

due to the motion of target or camera. Jumping and deer video

sequences are all suffered from severe motion blur. Fig. 8 (c)

gives the tracking performance of jumping sequence. From

this test we can see that CT, KMS, KCF, MTT and OAB give a

poor tracking performance in this sequence while NR-MVDLSR,

TLD and MVDLSR can still track the motion of the boy’s face.

Fig. 8 (d) is the tracking performance of deer sequence. From

this test we can see that NR-MVDLSR and STRUCK methods give

a better tracking performance than other 12 methods do. 
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Fig. 7. Success and precision plots over 30 video sequences: (a) Success plot, (b) Precision plot. 

Fig. 8. Qualitative tracking results on the randomly selected frames with some challenging factors: (a)-(b) occlusion, (c)-(d) motion blur, (e)-(f) scale variation, (g)-(h) 

illumination change, (i)-(j) pose variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Scale variation: In the car4 video sequence (see Fig. 8 (e)), there

is a drastic change of scale and illumination when the car

goes underneath the overpass. NR-MVDL SR, MVDL SR and MVSR

methods can perform well in the whole sequence while CT,

Frag, CSK, OAB and KCF methods cannot adaptively suit the

change of the target appearance, hence they give a poor track-

ing performance. In the walking2 video sequence (see Fig. 8 (f)),
the scale of the women’s appearance would become more and

more smaller when the target is far away from the camera.

From this test we can clearly see that the proposed NR-MVDLSR

method is robust to the scale variation in walking2 sequence. 

4) Illumination change: Trellis and skating1 sequences are suffered

from severe illumination change. From Fig. 8 (g) we can see

that when the illumination of target’s face changes dramati-
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Fig. 9. Each frame position error over 10 video sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Randomly selecting two frames as example to show the failure cases in 

motorrolling video sequence. 
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cally, such as the 272-th frame, OAB, FRAG, CT and CSK methods

begin to drift. The proposed NR-MVDLSR method can still give

a better tracking performance in the whole sequence because it

is robust against the severe illumination change. In Fig. 8 (h), the

illumination in the skating arena would be frequently changed.

Moreover, the player would also be suffered from occlusion and

pose variation. From this test we can see that NR-MVDLSR and

MVDLSR methods can give a better tracking performance than

other 12 methods do. 

5) Pose variation: The tests in Fig. 8 (i) and (j) are very difficult

because there is severe pose variation in these two video se-

quences. MVDLSR method fails to track the target in the shak-

ing video sequence whereas NR-MVDLSR can still accurately

track the moving target in two video sequences. 

Fig. 8 only uses 2 random selected frames to illustrate the qual-

itative tracking performance of different tracking methods. To il-

lustrate the performance of our proposed method more clearly, we

also give each frame position error (see Fig. 9 ) for these 10 selected

video sequences in qualitative evaluation. For a clear display, we

only choose two methods, which have good tracking performance

in Fig. 8 , as comparison to carry out this test. From Fig. 9 , we can

clearly see that our method still maintains small position errors

over 10 very challenging video sequences. 

5.6. The failure case 

Although the proposed sparse representation method can give

a good tracking performance in aforementioned experiments. It

could not guarantee a good tracking performance in motorrolling

video sequence (see Fig. 10 ). Motorrolling sequence is very chal-

lenging because it contains very large scale changes and fast ro-

tation. The possible reason for the tracking failure in motorrolling

sequence is that the template updating strategy cannot timely cap-

ture the appearance changes, and thus the target cannot be well

represented by multi-view dictionaries. Online multi-view dictio-

nary learning technology may solve this problem, however it is out

of our scope in this paper. 
. Conclusion and future work 

In this paper, we have proposed a nonlocal regularizer penal-

zed multi-view discriminant sparse representation method for vi-

ual tracking. By exploiting the group similarity using multi-view

iscriminant learning and adopting a nonlocal regularizer to en-

orce the spatial smoothness among the sparse representations of

ifferent group projections, the proposed method can properly fuse

eliable and unreliable observation groups to enhance the robust-

ess of visual tracking in severe occlusion, illumination change or

ose variation. Experimental results illustrated that the proposed

ethod can give a superior performance in challenging video se-

uences as compared to a number of known methods in literature.

n this paper, the multi-views for visual tracking have the same di-

ension. To extend our sparse representation to other computer

ision applications, our future work is to build a more general

ulti-view sparse representation model with flexible size of fea-

ure subsets. 
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ppendix A 

Here, we discuss the detailed mathematical deduction of

lgorithm 1 . To solve problem (14), we first adopt augmented La-

range function to rewrite (14) as 

 (�, U , Z , P , �, β) = 

1 

2 

c ∑ 

i =1 

m ∑ 

k =1 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) Z 

k 
i ‖ 

2 
F 

+ λ1 T r( U W U 

T ) + λ2 ‖ �‖ 2 , 1 

+ λ3 T r( P 

T ( S − D ) P ) 

+ < �, B( U ) + C( Z ) − D(�) > 

+ 

β

2 

‖B( U ) + C( Z ) − D(�) ‖ 

2 
F , (A.1) 

here � = 

(
�11 �12 

�21 �22 

)
is the Lagrange multiplier matrix, with

ij ∈ R m ×n (i = 1 , 2 ; j = 1 , 2) being its submatrices, and β > 0 is

he penalty parameter. Since it is very difficult to choose an op-

imal value for β in advance, we adopt a simple and efficient rule

o adaptively update it to further accelerate the convergence rate

see the 9 step in Algorithm 1 ). Problem ( A 1) becomes a non-

onstrained problem, which can be solved by iteratively minimiz-

ng the augmented Lagrange function and updating the Lagrange

ultiplier as follows, 

(�t+1 , Z 

t+1 
, U 

t+1 
, P 

t+1 ) = min 

�, U , Z , P 
L (�, U , Z , P , �, β) , (A.2)

t+1 = �t + β(B( U 

t+1 ) + C( Z 

t+1 ) − D(�t+1 )) . (A.3)

Note that it is difficult to solve ( A 2) directly because it requires

o simultaneously minimize four variables. Next, we propose to use

n alternating strategy to divide ( A 2) into four sub-problems, re-

erred to as P -step, �-step, Z -step and U -step. 

P -step is to update projection matrix P . Here, we fix �, Z and

 , and update P by solving the following problem 

in 

P 

c ∑ 

i =1 

m ∑ 

k =1 

1 

2 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) Z 

k 
i ‖ 

2 
F 

+ λ3 T r( P 

T ( S − D ) P ) . (A.4) 

sing the relationship between matrix trace and Frobenius norm,

e can simplify problem ( A 4) as 

in 

P 
T r( P 

T M P ) + λ3 T r( P 

T ( S − D ) P ) , (A.5)

here Q 

k = 

∑ c 
i =1 (Y 

k 
i 

− A 

k Z 

k 
i )(Y 

k 
i 

− A 

k Z 

k 
i ) 

T , M = diag( Q 

1 
, Q 

2 
, . . . ,

 

m ) . Let S ′ = λ3 S + M , then problem ( A 5) becomes 

in 

P 
λ3 T r( P 

T ( S ′ − λ3 D ) P ) , (A.6)

hich can be solved directly by setting its first derivative to zero,

iving 

 

−1 S ′ P = λ3 P . (A.7) 

he eigenvector matrix P 

∗ with respect to D 

−1 S ′ becomes the so-

ution to problem ( A 7). 

By fixing P , Z and U , the �-step aims to update matrix �t+1 

y solving the following problem 

in 

�
λ2 ‖ �‖ 2 , 1 + 

βt 

2 

‖B( U 

t ) + C( Z 

t ) − D(�) + 

1 

βt 
�t ‖ 

2 
F . (A.8)

gnoring the constant elements in ( A 8), we can obtain 

t+1 = �λ2 
βt 

( Z 

t + 

λ2 

βt 
�t 

11 ) , (A.9)
here �α( ·) is a matrix operator [42] . Suppose there is a matrix X ,

uch that �α( X ) outputs a matrix in which the i -th row of �α( X )

s updated as 

�α( X )](i, :) = 

⎧ ⎨ 

⎩ 

(‖ X (i, :) ‖ 2 − α

‖ X (i, :) ‖ 2 

)
X (i, :) ‖ X (i, :) ‖ 2 > α

0 otherwise 

(A.10) 

here [�α( X )](i, :) means the i -th row in �α( X ) , X (i, :) means the

 -th row in X , 0 is a zero vector which has the same size as X (i, :) ,

nd α is a soft thresholding. 

In Z -step, Z 

t+1 is updated by solving the following problem 

in 

Z 

1 

2 

c ∑ 

i =1 

m ∑ 

k =1 

‖ ( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) Z 

k 
i ‖ 

2 
F 

+ 

βt 

2 

‖B( U 

t ) + C( Z ) − D(�t+1 ) + 

1 

βt 
�t ‖ 

2 
F . (A.11) 

n ( A 11), let F ( Z ) = 

∑ c 
i =1 

∑ m 

k =1 ‖ ( P 

k ) T Y 

k 
i 

− (( P 

k ) T A 

k ) Z 

k 
i ‖ 2 F 

, �( Z ) =
B( U 

t ) + C( Z ) − D(�t+1 ) + 

1 
βt �

t ‖ 2 
F 
, where F ( · ) and �( · ) are dif-

erentiable functions. Applying composite gradient mapping [54] to

roblem ( A 11), we can obtain 

 

t+1 = min 

Z 
F ( V 

t )+ < 
 F ( V 

t ) , Z > + 

1 

2 η
‖ Z − V 

t ‖ 

2 
F + 

βt 

2 

�( Z ) , 

(A.12) 

here η is a step-size parameter. Problem ( A 12) can be solved by
etting its partial derivative with respect to Z to zero, leading to 

1 

η
( Z − V 

t + η 
 F ( V 

t )) + βt C ∗
(
B( U 

t ) + C( Z ) − D(�t+1 ) + 

1 

βt 
�t 

)
= 0 , 

(A.13) 

here 

 
 F ( V 

t )] k i = −(( P 

k ) T Y 

k 
i ) 

T (( P 

k ) T Y 

k 
i − (( P 

k ) T A 

k ) V 

k 
i ) 

i = 1 , 2 , . . . , c k = 1 , 2 , . . . , m. (A.14) 

n ( A 13), C ∗(·) : R 2 m ×2 n → R m ×n is the adjoint operator. The prop-

rty of this operator is shown in Appendix B . Rearranging ( A 13),

e can obtain 

 

∗(C( Z )) = − 1 

ηβt 
( Z − V 

t + η 
 F ( V 

t )) 

−C ∗(B( U 

t ) − D(�t+1 ) + 

1 

βt 
�t ) , (A.15) 

here 

C ∗(B( U 

t ) − D(�t+1 ) + 

1 

βt 
�t ) 

= C ∗
(

1 
βt �

t 
11 − �t+1 1 

βt �
t 
12 

1 
βt �

t 
21 U 

t + 

1 
βt �

t 
22 

)
(A.16) 

ased on the property of operator C ∗, equation ( A 16) can be sim-

lified as 

C ∗
(

1 
βt �

t 
11 − �t+1 1 

βt �
t 
12 

1 
βt �

t 
21 U 

t + 

1 
βt �

t 
22 

)

= 

1 

βt 
�t 

11 − �t+1 − U 

t − 1 

βt 
�t 

22 . (A.17) 

ubstituting ( A 17) into ( A 15), we can obtain 

 

∗( C( Z )) = − 1 

βt 
�t 

11 + �t+1 + U 

t + 

1 

βt 
�t 

22 

− 1 

ηβt 
( Z − V 

t + η 
 F ( V 

t )) , (A.18) 
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with 

C ∗(C( Z )) = C ∗
(

Z 0 

0 −Z 

)
= 2 Z . (A.19)

Similar to ( A 17), ( A 19) is also obtained by using the property of

operator C ∗. Based on ( A 18) and ( A 19), we can finally obtain 

Z 

t+1 = τ
(
− 1 

βt 
�t 

11 + �t+1 + U 

t + 

1 

βt 
�t 

22 + 

1 

ηβt 
V 

t − η 
 F ( V 

t ) 
)
, 

(A.20)

where τ = 

ηβt 

1+2 ηβt . 

In U -step, U 

t+1 is updated by solving the following problem 

min 

U 
λ1 T r( U L U 

T ) + 

βt 

2 

‖B( U ) + C( Z 

t+1 ) − D(�t+1 ) + 

1 

βt 
�t ‖ 

2 
F . 

(A.21)

Problem ( A 21) is differentiable and can be solved by setting its first

order derivative to zero, obtaining 

λ1 U L + βt B 

∗(B( U ) + C( Z 

t+1 ) − D(�t+1 ) + 

1 

βt 
�t ) = 0 , (A.22)

where B 

∗(·) is another adjoint operator. The property of this op-

erator is also shown in Appendix B . Similar to ( A 15), we rearrange

( A 22) as 

B 

∗(B( U )) = −βt 

λ1 

U L − B 

∗(C( Z 

t+1 ) − D(�t+1 ) + 

1 

βt 
�t ) , (A.23)

where 

B 

∗(C( Z 

t+1 ) − D(�t+1 ) + 

1 

βt 
�t ) 

= B 

∗
(

1 
βt �

t 
11 + Z 

t+1 − �t+1 1 
βt �

t 
12 

1 
βt �

t 
21 

1 
βt �

t 
22 − Z 

t+1 

)
. 

(A.24)

Based on the property of operator B 

∗, equation ( A 24) can be sim-

plified as 

B 

∗
(

1 
βt �

t 
11 + Z 

t+1 − �t+1 1 
βt �

t 
12 

1 
βt �

t 
21 

1 
βt �

t 
22 − Z 

t+1 

)

= 

1 

βt 
�t 

22 − Z 

t+1 
. 

(A.25)

Substituting ( A 25) into ( A 23), we can obtain 

B 

∗(B( U )) = −βt 

λ1 

U L − 1 

βt 
�t 

22 + Z 

t+1 
, (A.26)

with 

B 

∗(B( U ) = U . (A.27)

where ( A 27) is obtained by using the property of operator B 

∗.

Based on ( A 26) and ( A 27), we finally obtain 

U 

t+1 = 

(
I + 

βt 

λ1 

L 

)−1 

( Z 

t+1 − 1 

βt 
�t 

22 ) . (A.28)

Appendix B 

Here, we discuss the property of adjoint operators B ∗ and C ∗. 

Let C ∗(·) and B 

∗(·) be the adjoint operators of C(·) and B(·) ,
respectively. Inspired by [41] , we have the following property 

< C( Z ) , � > = < Z , C ∗(�) > . (B.1)

< B( U ) , � > = < U , B 

∗(�) > . (B.2)
 

Through the definition of operator C(·) and B(·) in equation

15), we can obtain 

< C( Z ) , � > = T r 

( (
Z 0 

0 −Z 

)(
�11 �12 

�21 �22 

)T 
) 

= T r( Z �T 
11 − Z �T 

22 ) 

= < Z , �11 − �22 > . 

(B.3)

< B( U ) , � > = T r 

( (
0 0 

0 U 

)(
�11 �12 

�21 �22 

)T 
) 

= T r( U �T 
22 ) 

= < U , �22 > . 

(B.4)

Based on ( A 1) and ( A 3), the adjoint operator C ∗(·) can be calcu-

ated as 

 

∗(�) = �11 − �22 . (B.5)

Based on ( A 2) and ( A 4), B 

∗(·) can be calculated as 

 

∗(�) = �22 . (B.6)

ppendix C 

Let L 

t+1 = L (�t+1 , U 

t+1 
, Z 

t+1 
, P 

t+1 
, �t , βt ) and e t = ‖B( U 

t ) +
( Z 

t ) − D(�t ) ‖ 2 
F 

. We want to prove that the augmented Lagrange

unction in Algotithm 1 is bounded, which means that 

 

t+1 − L 

t ≤ βt + βt−1 

2 

e t t = 0 , 1 , . . . , n. 

roof. Given 

 

t+1 = L (�t+1 , U 

t+1 
, Z 

t+1 
, P 

t+1 
, �t , βt ) , (C.1)

e can obtain 

 

t+1 ≤ L (�t+1 , U 

t+1 
, Z 

t+1 
, P 

t 
, �t , βt ) 

≤ L (�t+1 , U 

t+1 
, Z 

t 
, P 

t 
, �t , βt ) 

≤ L (�t+1 , U 

t 
, Z 

t 
, P 

t 
, �t , βt ) 

≤ L (�t , U 

t 
, Z 

t 
, P 

t 
, �t , βt ) 

= L 

t + < �t − �t−1 , B( U 

t ) + C( Z 

t ) − D(�t ) > 

+ 

βt − βt−1 

2 

‖B( U 

t ) + C( Z 

t ) − D(�t ) ‖ 

2 
F 

= L 

t + βt−1 ‖B( U 

t ) + C( Z 

t ) − D(�t ) ‖ 

2 
F 

+ 

βt − βt−1 

2 

‖B( U 

t ) + C( Z 

t ) − D(�t ) ‖ 

2 
F . (C.2)

herefore 

 

t+1 − L 

t ≤ βt + βt−1 

2 

e t t = 0 , 1 , . . . , n. (C.3)

o prove e t is bounded, we should prove �t is bounded. This proof

s similar to Lemma 1 in [52] . Based on this observation, we use

heorem 4 of [53] to prove �t is bounded. Hence e t = ( �
t −�t−1 

βt−1 ) 2 

s bounded. 

This proof implies the upperbound of augmented Lagrange

unction. Based on [43] , if 
∑ ∞ 

k =1 (β
t ) −2 βk +1 < + ∞ , the upperbound

f augmented Lagrange function can imply that any accumulation

oints of U 

t 
, Z 

t 
, P 

t and �t can approach a feasible solution. �
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