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The multi-view sparse representation based visual tracking has attracted increasing attention because the
sparse representations of different object features can complement with each other. Since the robustness
of different object features is actually not the same in challenging video sequences, it may contain unre-
liable features (the features with low robustness) in multi-view sparse representation. In this case, how
to highlight the useful information of unreliable features for proper multi-feature fusion has become a
tough work. To solve this problem, we propose a multi-view discriminant sparse representation method
for robust visual tracking, in which we firstly divide the multi-view observations into different groups,
and then estimate the sparse representations of multi-view group projections for calculating the obser-
vation likelihood. The advantages of the proposed sparse representation method are two-folds: 1) It can
properly fuse the observation groups with reliable and unreliable features by using an online updated
discriminant matrix to explore the group similarity in multi-feature space. 2) It introduces a nonlocal
regularizer to enforce the spatial smoothness among the sparse representations of different group projec-
tions, which can enhance the robustness of multi-view sparse representation. Experimental results show

that our method can achieve a better tracking performance than state-of-the-art tracking methods do.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of multimedia and internet of
things [1-3], there is a pressing demand for intelligent video tech-
nology such as visual tracking. A typical tracking algorithm in-
cludes a motion model and an observation model. The motion
model aims to track the state of moving target, and the obser-
vation model evaluates the likelihood of each target observation
to select the best one for the current frame. Designing the obser-
vation model is a piece of tough work in visual tracking because
the target appearance often changes dramatically under occlusion,
background clutter or illumination change etc. To overcome those
challenges, lots of works have been done recently. According to dif-
ferent observation models, existing visual tracking algorithms can
be categorized into discriminative trackers and generative track-
ers. The discriminative trackers cast the target tracking as a bi-
nary classification problem to distinguish the tracked target from
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the video background. The state-of-the-art methods on discrimina-
tive trackers include support vector machine based methods [4,5],
online boosting [6-8], multiple instance learning based methods
[9,10], compressed tracker[11] and correlation filter based methods
[12,13] etc. The generative trackers typically search for an image
region that best matches the object appearance. Recent efforts in
this domain include subspace learning based tracking [14-16], ma-
trix decomposition based tracking [17-19] and sparse representa-
tion based tracking [20] etc. Besides aforementioned observation
models, the deep leaning based trackers [21-23] have attracted
more attention due to the ability of nonlinear representation. The
tracking performance of those methods often relies on a tedious
off-line pre-training with tremendous amount of labeled training
samples, thus the performance is sensitive to the choice of train-
ing samples and tends to be overfitting in the presence of label
noise. In real world visual tracking, we may have a small number
of labeled training samples or even only have non-labeled samples.
In this case, how to achieve a robust visual tracking is worth giving
the careful consideration.

Among existing generative trackers, sparse representation based
visual tracking is the one that can use non-labeled samples to
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Fig. 1. An example of multi-views in visual tracking.

achieve visual tracking. Using sparse representation for visual
tracking was first proposed by Mei [24], where the likelihood of
target observation was evaluated through solving a series of reg-
ularized least square problems. Since this algorithm estimates the
sparse representations of different particle observations separately,
it ignores the particle relationships and makes the tracker prone
to drift away. Although a lot of works [25-30] have been done to
improve the performance of Mei’s algorithm, those trackers may
drift away from the target in long term video sequences because
they only use pixel intensity to model the target appearance. The
pixel intensity is robust to particle occlusion but sensitive to the
shape deformation of moving target and illumination change. In
computer vision, multi-view refers to different feature subsets used
to represent particular characteristics of an object (see Fig. 1).
Based on this concept, Hong et al. [31] proposed a multi-view
based multi-task sparse representation method for visual track-
ing, in which different features can complement with each other
to give better tracking performance as compared to single feature
based tracking methods. The method in [31] was derived based
on the assumption that all the features can work well in visual
tracking. However, it may not be valid in the video sequences with
severe occlusion because some feature observations, such as tex-
ture, are prone to be disturbed by occlusion or video noise. In fact,
the robustness of a moving object feature can be varied by dif-
ferent kinds of appearance variations. For example, the histogram
is robust to local distortion, but sensitive to background clutter.
Those features with low robustness can be regarded as unreli-
able features due to the fact that they cannot be well represented
by the corresponding feature dictionary. Fusing unreliable feature
with high sparse representation error may degrade the tracking
performance in challenging video sequences. Similar to Hong’s al-
gorithm, Hu et al. [32] also used multi-task multi-view sparse rep-
resentation to model the target appearance. Since this algorithm
could not discriminate the reliable and unreliable features during
sparse representation, it may reduce the robustness of sparse rep-
resentation results. To overcome the limitations in [31] and [32],
Lan [33] proposed a multi-view based method to adaptively detect
unreliable features and remove them during sparse representation.
In fact, unreliable feature contains useful complementary informa-
tion, and if used properly, it would enhance the tracking perfor-
mance.

As aforementioned introduction, the key point in multi-view
sparse representation based visual tracking is to properly fuse
multi-view observations during sparse representation, which is a
piece of tough work due to the following two challenges: (1) the
unreliable views may disturb the fusing results, (2) it is clearly
shown in Fig. 1 that there exist not only the potential similarity
but also a large gap between different kinds of views. Exploiting
the so called potential similarity can facilitate multi-view fusing.
However, how to explore this similarity under multi-view gap is
still an open problem.

Existing works such as Lan et al. [33] only focus on reducing
the negative effect of unreliable views. As far as we know, there
are few works that can simultaneously overcome two challenges
in multi-view fusing. In this paper, we propose a multi-view dis-

criminant learning based sparse representation method for robust
visual tracking. Different from traditional multi-view sparse repre-
sentation based tracking methods that directly use the sparse rep-
resentations of multi-view observations to calculate the observa-
tion likelihood, our method firstly divides the multi-view observa-
tions into different groups, and then estimates the sparse represen-
tations of multi-view group projections for calculating the obser-
vation likelihood. Since the correlations between different observa-
tions of each view can be varied by the appearance variation, some
observations may be very similar [34]. Dividing the multi-view ob-
servations into different groups and introducing group projections
in sparse representation enable us to use multi-view learning to
simultaneously exploit the group similarity in the same and differ-
ent views, which can avoid the uncorrelated observation destroy-
ing the common sparsity and highlight the useful information in
the unreliable observation groups (the observation groups with un-
reliable views).

The main contributions of this paper are summarized as fol-
lows:

1) We first propose a multi-view discriminant learning based
sparse representation method to explore group similarity in the
multi-feature space, which is then incorporated into a particle
filter based framework to achieve robust visual tracking. The
proposed method makes use of unreliable observation groups
to achieve multi-view fusion and makes different observation
groups more group discriminative.

2) In our sparse representation method, we propose a nonlocal
regularizer to guarantee a robust tracking performance in se-
vere object occlusion, pose variation etc. The nonlocal regu-
larizer can simultaneously exploit both local and nonlocal re-
lations among the sparse representations of group projections,
enhancing the inherent consensus in different views.

3) We propose an adaptive alternating direction algorithm to solve
the optimization problem involved in the proposed sparse rep-
resentation method. The new reconstruction method can adap-
tively update the penalty parameter to achieve a fast conver-
gence.

It is worth mentioning that in our previous work [35], the
multi-view discriminant learning is introduced in the sparse rep-
resentation model for the first time. The main differences between
this paper and [35] are summarized as follows: Firstly, the sparse
representation method in[35] only uses I, ; norm to constrain the
sparse representation result, which may reduce the robustness of
sparse representation because the reliable and unreliable view ob-
servations may not share the common sparse pattern when facing
severe appearance variation. In this paper, we propose a nonlocal
regularizer to enforce spatial smoothness among the sparse repre-
sentations of different group projections, which can eliminate the
negative effect caused by the sparse representations of the unreli-
able observations. Secondly, introducing the nonlocal regularizer in
the multi-view sparse representation makes the optimization prob-
lem more complex. The reconstruction method in [35] cannot be
directly used to solve this optimization problem. Here, we propose
an adaptive alternating direction algorithm to solve this problem
with fast convergence. Finally, we theoretically analyze the con-
vergence of the proposed reconstruction method and increase the
number of testing sequences for a thorough evaluation of the pro-
posed tracking method.

This paper is organized as follows: in Section 2, we discuss
the key problem in designing the sparse representation model.
Section 3 illustrates our proposed sparse representation model in
detail. Section 4 introduces how to use the proposed sparse rep-
resentation model to achieve visual tracking. Experimental results
and conclusions are presented in Sections 5 and 6, respectively.
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Fig. 2. The observation group similarity in different views.

2. Problem formulation

In this paper, multi-view refers to multiple features, e.g. color,
shape and texture, that are used to represent a moving target. The
views which do not work well during sparse representation are
regarded as unreliable views. The multi-view sparse representa-
tion based visual tracking aims to use the sparse representation
results to estimate the likelihood of multi-view observations. In
this method, the tracking performance relies on the design of the
sparse representation model. Here, suppose Y":[y’{,y’g,...,y’;]
(k=1,2,...,m) denotes the observation matrix in the k-th view,
where each column y{.‘ means the i-th observation vector. Tradi-
tional multi-view based sparse representation model can be de-
scribed as [32]

1
Hgnil;: IY* ~ A@ |17 + A© 1. (1)
K=

where A denotes the target template matrix in the k-th view.
Problem (1) is aimed to seek the sparse representation matrix of
YX. The drawbacks of problem (1) are two-folds: (1) It cannot dis-
criminate the contributions of multi-view observations because it
uses the same weight for the sparse representation errors of differ-
ent view observations. The unreliable views may give a high sparse
representation error, thus causing a tracking drift in challenging
video sequences. (2) It assumes that the columns in Y¥ are highly
correlated, hence the sparsity in © is constrained by I, ; norm.
This assumption may not be valid in challenging video sequences
because the vectors in Y* are easily disturbed by appearance vari-
ation. If some vectors are disturbed seriously, they are not highly
correlated with adjacent vectors. In this case, only using I, ; norm
to constrain ® may give a poor sparse representation result.
Different from [32], we firstly divide n vectors in Y into ¢
groups, ie. YS=[y¥, vk ... yK]=[Y{,Y5,....Y¥], and then esti-
mate the sparse representations of multi-view observation groups
jointly. Since the correlation between different vectors in matrix
Y¥ can be varied by appearance variation, dividing Y* into ¢ groups
enables us to explore the common sparsity according to the dif-
ference in vector correlation. The key to our sparse representa-
tion method is to exploit the group similarity during the sparse
representation for properly fusing the reliable and unreliable ob-
servation groups. The group similarity is shown in Fig. 2. We can
see that the observation groups not only have intra-view similarity,
but also have inter-view similarity. The intra-view similarity means

that the observations in the same group and the same view are
highly correlated, while the inter-view similarity is that the same
observation groups in different views contain inherent correlation.
Due to the large gap between different views [55], directly exploit-
ing the aforementioned group similarity is no longer applicable. In-
spired by multi-view discriminant analysis [36], we use a discrimi-
nant matrix to project multi-view observation groups into a latent
common space in which the between-group variations from both
inter-view and intra-view are maximized, while the within-group
variations from both inter-view and intra-view are minimized. In
this case, the within-group similarity in the unreliable view can be
enhanced, which would highlight the useful information in the un-
reliable observation groups. The multi-view group projections are
denoted as (P")TYf‘, where P¥ is the learned discriminant matrix
for the k-th view, Yf (Yf< C Yk) denotes the i-th observation group
in the k-th view. With this consideration, we form the following
sparse representation based optimization problem,

c m
. 1
miny° 37 S 1| (POTYE — (P)TAHO7 + 21O (2)
i=1 k=1
where e=[6el . ..e . .e", with o=
[0, [0, ....[0,] (k=1.2,....mi=1,2,....c) denot-

ing the sparse representation result of the i-th group projection in
the k-th view, and [®f-‘]j (j=1,2,...,r) being the j-th vector in
matrix ®f~‘. Problem (2) aims to estimate the sparse representation
matrix of (P")TYff. Compared with (1), problem (2) can obviously
reduce the large sparse representation error caused by unreliable
observations because (P")TYf-‘ can maximize the common infor-
mation and minimize the disturbance in multi-view observation
groups.

Inspired by [36], to learn the discriminant matrix P (k=
1,2,...,m), the between-group variation from all views should be
maximized while the within-group variation from all views should
be minimized. This means that the trace of within-group scatter
matrix PTSP should be as small as possible. Meanwhile, the trace
of between-group scatter matrix P'DP should be as large as possi-
ble. Based on this observation, the discriminant matrix is learned
by solving following problem:

mpin Tr(P"(S—D)P), (3)

where P =[(P)T, (P>, ..., (P™T]T with P¥ denoting the dis-
criminant matrix for the particle observations in the k-th view,
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Fig. 3. Illustrate the difference between the multi-view discriminant learning based sparse representation method (Eq. (4)) and the nonlocal regularizer penalized multi-
view sparse representation method (Eq. (5)). The sparse representation results of Eq. (4) may have non-sparse pattern, which will cause tracking drift in challenging video
sequences. The detail of the ellipse is presented in Sections 3.1 and 3.2 . Main contributions in the proposed sparse representation method are highlighted with yellow boxes.

matrices S and D are two parameter matrices, which are used to
calculate the within-group variation and the between-group varia-
tion, respectively. Here, we use the particle observations at the first
frame as the training samples for calculating matrices D and S in a
manner similar to that in [36].

Based on (2) and (3), the proposed multi-view discriminant
learning based sparse representation method is formulated as

R |
min 3737 S I PO — (POTAY O 7 + 1Oz
’ i=1 k=1
+ATr(P' (S~ D)P). (4)

Problem (4) integrates multi-view learning and sparse representa-
tion into a unified optimization model, in which, we can simul-
taneously achieve sparse representation and update the discrimi-
nant matrices. The matrix P¥ is updated to explore the potential
commonality between reliable and unreliable observation groups,
making (P")TYff more group-discriminative in the latent common
space. In this case we can properly fuse multi-view group projec-
tions when estimating the sparse representation of (Pk)TYf. In (4),
(P")TA’< highlights the potential commonality in multi-view tem-
plate matrices.

3. The nonlocal regularizer penalized multi-view sparse
representation

In (4), the sparse representations of multi-view group pro-
jections are arranged together to form @. As shown in Fig. 3,
the multi-view discriminant learning based sparse representation
method (Eq. (4)) may not guarantee the sparsity of multi-view
sparse representation in challenging video sequences because it

only uses I, ; norm to constrain the sparsity of ®, making the
sparse representations of unreliable observation groups may not
share the same sparse pattern with that of reliable observation
groups. To enforce the common sparsity in ©, we propose to use
a nonlocal regularizer in multi-view discriminant learning based
sparse representation. The proposed regularizer can exploit the in-
herent similarity in the sparse representations of different group
projections. Thus, we can enforce the spatial smoothness among
the multi-view sparse representation results. The nonlocal regular-
izer penalized multi-view sparse representation is then formulated
as

c m
. 1
min 37" S P)TYE - (PTAY O} + 11g(©)
’ i=1 k=1
+22]1®ll2,1 + AsTr(P' (S — D)P), (5)

where g(®) is the nonlocal regularizer, which is employed to en-
force spatial smoothness among the sparse representations of dif-
ferent group projections. The concrete expression of g(®) will be
derived in the next section.

3.1. The nonlocal regularizer

In (5), ©=[@].....0f . ... 0" where O=[06f].[60,
,...,[G),’f]r] (i=1,2,...,c;k=1,2,...,m). For notational simplic-
ity, in this subsection, @ is rewritten as © =[01,6,, ..., 0mc],
where 6; denotes the i-th vector in matrix ©. The proposed reg-
ularizer g(®) is defined as

g©) =" 3 $(IP@) —P@) ). (6)

0;c®0;c Ny
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Fig. 4. The graph regularizer versus the proposed nonlocal regularizer. (a) The proposed nonlocal regularizer, (b) The graph regularizer.

where ¢(-) is the robust distance operator, which, for a scalar x, is

defined as ¢(x) =0 (1 — e*g), Ny denotes the searching window,
P(6;) (or P(6;)) is an operator which is introduced to select adjacent
elements centered at @; i.e. P(0;) =[0;_y,...,0;_1,0;,0,.1,...,0,.,]
Different from graph regularizer [26], here we introduce the oper-
ator P(6;) in (6) for solving the MMV based inverse problem, which
can make g(®) not only exploit the nonlocal similarity of @, but
also consider the local interdependence in adjacent sparse repre-
sentation results. The intuitive difference between the graph reg-
ularizer and our nonlocal regularizer is shown in Fig. 4. We can
see that our regularizer adds the robustness of the sparse repre-
sentation because it exploits the relationship between a group of
adjacent vectors in ; and the corresponding vectors in 6;. On the
other hand, the graph regularizer can only exploit the relationship
between vector #; and 6;. Note that calculating g(®) in (6) is NP-
hard due to its nonconvex nature. Inspired by [37], we use Ma-
jorize Minimize (MM) algorithm [38] to simplify (6). First, we have

d(IP(B;) — P(0)Ilr) < s(. j)IP(6;) — P(B) |7 +b. (7)
where
s(i. j) = &' (IIP(;) —P(O))IF) (8)

2(|P(6;) — P(8)) I

is a nonlinear function for measuring the similarity between 6; and
0;. As parameter b in (7) is a constant, we can ignore it in the
optimization process. Taking (7) into (6), we can obtain

§©) =Y Y s )IP®) - P@6)2. 9)
0;c®0;c Ny

Note that Eq. (9) involves a weighted Frobenius norm for calculat-
ing patch differences. Suppose there is a matrix F = [f;,f,, ..., f;],
IF|2= Y"1, [If;|3. Based on the above definition, Eq. (9) can be
rewritten as the weighted sum of vector differences, i.e.,

20) <> 3 s.) Y 00— 0j.all3

0ic®0;c Ny a=-u
u
= Z ZZS(L DOiq — 0j+a||%
a==U0; 4 0j:q
<Y > wylloi- 6513, (10)
0;c®0;c Ny

with

u
wij = Zs(i—a,j—a), (11)
a=-u
For V0;c® and Vfje Ny, we have 6, ,c® and ;. ,¢ Ny
Through variable substitution, we can obtain the final result in
(10), where wj; is calculated as the sum of similarity measure s(i,
J) between patch pairs in P(6;) and P(6;).

Based on (10) and [39], g(®) can be finally relaxed as g(®) <
Tr(OLOT), where L is the Laplacian matrix. The difference be-
tween our Laplacian matrix and the Laplacian matrix in [39] is that
the weight wj; in our method is used to measure the similarity of
the sparse representation results. Hence our Laplacian matrix can
enforce the spatial smoothness among the sparse representations
of different group projections. The Laplacian matrix in [39] is used
to measure the similarity between different training data, which
can highlight the difference between different classes.

Substituting Tr(@LOT) for g(®) in Eq. (5), we can rewrite
the nonlocal regularizer penalized multi-view sparse representa-
tion as

c m
. 1
min 3% 5 1PV~ (PYTAH O |7 + 11 Tr(OLOT)
’ i=1 k=1
+2[|© 2.1 + AsTr(P'(S ~ D)P). (12)

Now problem (12) is a tractable problem which will be solved in
the next section.

3.2. The reconstruction algorithm

Here, we will present the detailed reconstruction algorithm for
the nonlocal regularizer penalized multi-view sparse representa-
tion in Fig. 3. Problem (12) is a non-constrained problem, and di-
rectly solving this problem using Accelerated Proximal Gradient
(APG) algorithm [34] will slow down the convergence speed. Al-
ternating Direction Method of Multipliers (ADMM) algorithm can
give a faster convergence rate than APG algorithm [41], however, it
always involves high computational complexity. To overcome the
limitation of above algorithms, we propose an adaptive ADMM al-
gorithm to solve problem (12), in which, we firstly use variable
splitting method [40] to rewrite (12) as follows

Cc m
. 1 Ok Tyk kT pky7k (12
911[1]1;11) ;;EH(P ) YF — (PY)'AOZ{||;

+A1Tr(ULUT) + A2 [|® |51 + A3Tr(PT (S — D)P).
st. Z=O,U=12 (13)
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Reformulating (12) to (13) is aimed to change a difficult prob-
lem into a decomposable easy problem. After changing (12) into
(13), we secondly merge the two constraints in (13) into a linear
constraint and obtain

c m
. 1, ok k i
S [[POHTYE — (PY)TANZ| 12
Jnin ;,; 5 I PHTY; — (PHTADZ{ |7
+ M Tr(ULUT) + A2 (@ ||2.1 + A3Tr(PT (S — D)P),

st. B(U)+C(Z) =D(O) (14)
where B, C and D: R™*" — R2mx2n are linear operators which are
defined as

sw):(g I‘_’,)cm:(ﬁ _"Z>

D(O®) = (%’ g) (15)

where element 0 in (15) is a zero matrix of the same size as O,
U and Z. Compared with (13), problem (14) can deal with all the
constraints together to reduce the computational complexity.
Finally, we propose to use Augmented Lagrange method to solve
problem (14). The flow chart of the Augmented Lagrange method
is shown in Algorithm 1, and the detailed mathematical deduc-

Algorithm 1 Augmented Lagrange Method for Solving Problem
(114D

Input: Y¢, A, Ay, A, and A3

Output: O, P

Initialize: t =0, @°=V°=2°-u’=0,P=0

while |©+! — ©!||2 > 10-5 do

1. Using augmented Lagrange function to change (13) into a non-
constraint problem.

2. P-step

Updating P‘*! by solving D~'S'P = A5P.
3. O-step

Updating @1 = FL% '+ %Afn)

B

4. Z-step

Updating Z'' = t(—#Aql + O LU + #Agz + #Vt -nv
F(VY)).
5. U-step

Updating U™ = (I + f—:L)—l @+ - JAL)
6. Vil =z 4zt —7t)
7. A = At 4 BE(BUTY) 4 (2T — D(OH))
8. Updating Laplacian matrix L
9. ’3[+1 — min(ﬁm"x,pﬂf)
10. t «<—t+1
end while

tion for Algorithm 1 is shown in Appendix A. The advantage of
Algorithm 1 is that we introduce the adjoint operators B* and C*
in Z-step and U-step, respectively, to simplify the process of sparse
coefficients estimation.

3.3. Convergence and computational complexity analysis

Problem (14) is a convex but non-smooth problem. It is difficult
to rigorously prove the convergence of the proposed Augmented
Lagrange method. Convergence analysis of a general convex but
non-smooth problem has been given in Tao and Yuan [43], where
it is stated that if the Lagrange function is bounded, the Augment
Lagrange Multiplier based reconstruction method can give a feasi-
ble solution. Based on [43], we have proved that the augmented
Lagrange function of (14) is bounded in Appendix C, which can

theoretically illustrate that Algorithm 1 is guaranteed to yield a
feasible projection and sparse representation matrices. The com-
putational complexity of each iteration in Algorithm 1 is mainly
incurred by step 4, which is O (mcns?) , where n is the number of
rows in matrix P, s is the particle number of an observation group,
m is the number of views and c is the number of observation
groups in each view. In comparison, the computational complexity
for solving the sparse representation method in [31] is ©(2muv?)
(u is the original dimension of observation matrix, u >=n, v is the
particle number of undivided observation matrix), and the com-
plexity of multi-task tracker [26] is O(uvd) (d is the number of
columns in template matrix). As a concrete example, if the num-
ber of views is 3, the group number is 8, the particle number
without any division is 400, then the computational complexity of
our method is in the order of 10°, which is much lower than that
required by [31] (O(2muv?) ~ 107). It is also lower than that re-
ported in [26] where d > u, and O(uvd) ~ 106.

3.4. Discussion

The proposed nonlocal regularizer penalized multi-view sparse
representation method is closely related to the state-of-the-art
tracking methods [31], [32] and [34]. Here, we will further discuss
the difference between our method and those related works.

Difference from the work in [34]: In particle filter based vi-
sual tracking framework, the correlation between different particle
observations are actually not the same, some observations may be
very similar. Based on this observation, both [34]| and our work di-
vide particle observations into different groups for visual tracking.
However, [34] explores group similarity in one view, while we pro-
posed to explore the group similarity in the multi-feature space.
Exploring the group similarity in multi-feature space is a chal-
lenging task because it not only requires to maximize the intra-
group similarity in a certain view, but also requires to make sure
that the same observation groups in different views can highlight
their inherent commonality. For this purpose, our proposed sparse
representation method (equation (12)) uses multi-view discrimi-
nant learning to simultaneously explore the intra-view and the
inter-view similarity, which can guarantee that similar observation
groups have similar sparse representation results.

Difference from the works in [31] and [32]: [31], [32] and our
work are all to minimize the sum of the multi-view sparse rep-
resentation errors to make different views complement with each
other. In fact, [31] and [32] may not obtain the minimal sum of the
multi-view sparse representation errors because they could not ef-
fectively resist the high sparse representation errors caused by un-
reliable views. Different from [31] and [32] that directly use multi-
view observations to achieve sparse representation, we firstly di-
vide multi-view observations into different groups, and then use
the group projections to achieve sparse representation. The group
projections are obtained by using the online updated projection
matrices to project observation groups into a common subspace.
Since the projection matrices are updated through exploring the
multi-view group similarity, they can enforce the within-group
similarity in the unreliable view. Based on this advantage, intro-
ducing group projections in multi-view sparse representation can
highlight the useful complementary information of different ob-
servation groups. This means that the disturbance in unreliable
observation groups can be reduced, which is good for minimiz-
ing the sparse representation errors of unreliable views. Moreover,
the nonlocal regularizer in (12) can enforce the spatial smoothness
among multi-view sparse representation results, which can further
reduce the sparse representation errors of multi-view group pro-
jections.
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4. Visual tracking framework

Here, we employ our proposed sparse representation method to
achieve visual tracking. In this paper, the moving object is tracked
under a particle filter framework, which mainly consists of two
parts: the first part is to sample particles to generate multi-view
observations using the particle filter method. The second part cal-
culates the posterior probability of different particle samples us-
ing the sparse represent results from Algorithm 1. In the parti-
cle filter method, the state vector of a moving target at time ¢ is
denoted as x' € R", and the observations of the state vector from
time 1 to t are denoted as )f = {y!,y2,...,y'}. Using the Bayes
rule, the posterior probability p(x{|)t) is calculated as p(xf|J!) o
Py Ix) [IpX [ p(x =Ty =T)]dx!~T, where p(y‘|x’) is the ob-
servation likelihood and p(x‘|x{~1) denotes the motion model. As
it is very difficult to calculate p(x!|)!) directly using the aforemen-
tioned formula, the posterior probability is instead approximated
by p(x‘|¥") = Yj_; w§8(xf - xj), where § is the Dirac measure, x§
is the j-th sampled particle at time t, and a)j. is the particle im-
portance weight, which is updated by ws. = a)ﬁflp(ytlx;). Based on
particle filter method, we use three features, namely intensity, tex-
ture and edge to represent ) for generating Y* (k = 1,2, 3). To cal-
culate p(xt|)"), the key is to compute p(yflxs.).

At time t, suppose we have obtained the three-view observa-
tion matrices Y', Y> and Y> using aforementioned particle filter
method. Firstly, we divide each observation matrix into different
sub-matrices (groups) by online k-means method [34]. Choosing
online k-means because it can only use a newly arrived state vec-
tor to update the cluster centroid, we can avoid time-consuming
re-clustering. To enhance the clustering performance, similar to
[34], we use v = [u, v, q"]T as state vector for observation cluster-
ing, which is robust to image noise and can make different obser-
vations more group-discriminative. In v = [u, v, q7]T, [u, v] is the
target coordinate and q” is the target appearance of multi-views.
In visual tracking, the cluster centroid is online updated by

M =pe+EW - o) (16)

where pe means the cluster centroid in the c-th group, v is the
newly arrived state vector and £ is the learning rate.

After the observation grouping process, secondly, we esti-
mate ® =[O}, ... 0 ... @3 (k=1.2,3;i=1,2,....c) by using
Algorithm 1 to solve problem (14). When obtaining ©, we then
calculate the sparse representation errors of different observation
groups. The i-th observation group error is calculated as

3
e(i) = > [[(PTYE — ((P)"A) O]
k=1

2i=1,2,...,c (17)

Next, based on e(i), we select an observation group with min-
imum sparse representation error to achieve observation likeli-
hood estimation. Suppose the 1-th observation group has mini-
mum sparse representation error, hence, the observation likelihood
p(y‘|x5.) is calculated by

3
PIX) = Fexp(-ar Y I (PHTIVE], - (PYTANOKL 2. (18)
k=1

where [Y’f]j (j=1,2,...,r) means the j-th particle observation
vector in the observation group Y’f and [@’1< ]j is the correspond-
ing sparse representation result. After calculating p(yf|x§), the fi-

nal optimal tracking result for the t-th frame is calculated as X’ =
T wbxt . . X . .

21717&], where a)§ is the particle weight of the j-th particle obser-
=19

vation. Since the proposed sparse representation method can use

multi-view discriminant analysis to make (P")TY§C group discrimi-

native and highlight the useful information in unreliable observa-
tion groups, we can give an exact estimation for e(i) and p(yf|x5.).

5. Experiments

In this section, we use the video sequences in CVPR2013 Vi-
sual Tracking Benchmark [44] to evaluate the performance of
our proposed visual tracking algorithm. These video sequences
are very challenging in the sense that they contain many ad-
verse factors against visual tracking such as fast motion, large
variation in pose and scale, occlusion and non-rigid object de-
formation etc. We compare the proposed tracking algorithm with
12 state-of-the-art methods: IVT[14], CT[11], 11-APG[25], MTT[26],
LRT[17], STRUCK[45], CSK[46], TLD[47], Frag[48], KMS[49], OAB[50]
and KCF[12]. Since our method and the existing ones like the
11-APG and MTT are all particle filter based sparse representa-
tion algorithms, the particle number is set equally as 400. To
illustrate the effectiveness of the projection matrix P* and the
nonlocal regularizer g(®) in the proposed sparse representation
method, we compare equations (1), (4) and (12) in our paper. Us-
ing Eq. (1) to achieve visual tracking is the multi-view sparse rep-
resentation method without projection matrix and nonlocal regu-
larizer. Eq. (4) is the multi-view discriminant learning based sparse
representation method, which introduces projection matrix in the
multi-view sparse representation. Finally, Eq. (12) is the nonlocal
regularizer penalized multi-view sparse representation method to
track moving object, which adds both projection matrix and the
nonlocal regularizer into the sparse representation. For notational
simplicity, we name the multi-view sparse representation method
without projection matrix and nonlocal regularizer, the multi-view
discriminant learning based sparse representation method [35] and
the nonlocal regularizer penalized multi-view sparse representa-
tion method as MVSR, MVDLSR, and NR-MVDLSR, respectively.

Experimental setting: In our experiments, we use three com-
plementary features to achieve visual tracking, which are inten-
sity, local binary patterns (LBP)[51] and edges with canny oper-
ator. The target template matrices in three views have the same
size, where A' € R2°6 x 20(j = 1,2 3). In these template matrices,
the particle observation size is 16 x 16, and the number of tar-
get templates is 20 (10 for foreground templates and 10 for back-
ground templates). Currently, the demo code is available at the URL
https://github.com/greatisgood123/MVDLSR.

5.1. Evaluation of cluster number

In this test, we choose a challenging video sequence called trel-
lis to evaluate the relationship between the group number and the
tracking performance. Choosing this sequence is because the tar-
get occupies a large space in video sequence, which can indicate
the difference of tracking performance more clearly. In the experi-
ment, we directly use online k-means [34] on multi-view observa-
tions to achieve group division without using any additional train-
ing process. During group division, we evaluate tracking perfor-
mance with varying group number. From Fig. 5 we see that the
proposed sparse representation method can give the best track-
ing performance when the particle observation is divided into 8
groups. If the group number is less than 8, some dissimilar parti-
cle samples may be involved in the particle observation groups and
share a similar sparsity pattern with similar samples, thus degrad-
ing the tracking performance. If the group number is larger than 8,
those similar particle samples cannot be grouped together, which
would also degrade the tracking performance.
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Table 1
FPS performance for different methods.
Tracker NR-MVDLSR  IVT CT CSK L1-APG ~ MTT Frag KMS STRUCK  TLD OAB KCF
Compiler  matlab matlab  matlab matlab C matlab  C++ matlab  C++ matlab  matlab  matlab
FPS 1.1 10.2 133 85.1 13.2 0.3 2.2 4.6 0.12 12.6 16.0 30.2
Table 2
FPS performance for different spare representation based trackers.
Tracker NR-MVDLSR ~ MVDLSR  LRT [17] MTMVT [31]  DGSP [34]  JSRFFT [33]
Compiler  matlab matlab matlab matlab matlab matlab
FPS 11 1.2 0.6 1.0 0.2 0.7
0.8 . . . . Table 3
FPS performance with differnet n value.
0.7 n 0.001 0005 0.01 005 01 0.5
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Fig. 5. Average overlap rate performance with varying candidate group numbers.

5.2. Runtime performance

To illustrate the computational complexity of the proposed NR-
MVDLSR method, we test the average tracking speed (Frame num
per Second, FPS) on a laptop with Inter(R) Core(TM) i3-2310M CPU
@ 2.10 Hz (2GB RAM) (see Table 1), where different methods are
all implemented on 30 video sequences.

To further illustrate the computational complexity of MVDLSR
and NR-MVDLSR methods, we compare them with four well-
known sparse representation methods. The testing result is shown
in Table 2. From Tables 1 and 2, we can see that although NR-
MVDLSR introduces multi-view learning and non-local regularizer
in sparse representation to achieve visual tracking, its computa-
tional complexity is similar to traditional sparse representation
based tracking methods.

5.3. Parameter analysis

There are four parameters 7, Aq, Ay, A3 that require to be set in
Algorithm 1. Inspired by [17], we randomly choose 10 challenging
video sequences to select the optimal combination of four param-
eters according to the parameter sensitivity analysis. The detailed
parameter analysis is discussed in the following.

Evaluation of 7: The learning step parameter n controls the
convergence rate of reconstruction algorithm. This parameter is
not related to Aq, A, and As. If the value of n is too small, the
convergence speed would be slow. If the value of 5 is too large,
it may cause vibration and no convergence. Inspired by parame-
ter sensitivity analysis [17], to choose the value for n, we first fix
A1, Ay and A3, and then test the running speed of reconstruction
algorithm with different n values. The testing result is shown in

FPS 04 0.6 11 NaN  NaN  NaN

Table 4
A3 =0.1.

A
Ay 0.1 0.15 0.2
0.1 067 067 0.68

1 075 068 071

Table 5
A3 =0.5.

M
k2 01 015 02

0.1 0.71 0.69  0.60
05 067 069 063
1 070 068 0.71

Table 3, where NaN means the reconstruction method is not con-
vergent, and FPS means the tracking speed (Frames per Second).
From Table 3 we could see that with the increase of parameter 7,
the FPS is gradually increased. When the value of 7 is larger than
0.01, the reconstruction method will not get convergent, thus lead-
ing to an inoperative tracking result. Based on Table 3, we empiri-
cally set n = 0.01 for all the experiments.

Evaluation of A, A, and A3: In our proposed sparse repre-
sentation model, A; and A, are two important parameters which
control the smoothness and the sparsity of the sparse representa-
tion result, respectively. On one hand, if A; and A, are too large,
it may cause over-smoothing and over-sparsity. On the other hand,
if both are small, the sparse representation result will suffer un-
desired sparse pattern, resulting in the poor tracking performance.
Besides A and Aj, A3z is also critical for the proposed sparse rep-
resentation model, which measures the contribution of multi-view
discriminant learning. To find an optimal combination of three pa-
rameters, we firstly fix A3 =0.1, and then calculate the average
overlap rate over 10 video sequences with different combinations
of A1 and A,. The value of A is selected from a predefined discrete
set A1 ={0.1,0.5,1}. The A, is selected from A, = {0.1,0.15,0.2}.
Thirdly, we fix A3 = 0.5 and A3 = 1, respectively, and re-calculate
the average overlap rate with different combination of A; and A,.
The average overlap rate with different combinations of A, A,
and A3 are shown in Tables 4, 5 and 6. From these tables, we
can see that the proposed tracking method gives the highest av-
erage overlap rate when A =1, A, =0.1 and A3 = 0.1. Hence, we
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Fig. 6. Average tracking performance over 30 video sequences: (a) Mean value of position error, (b) Mean value of overlap rate.

Table 6

A3 =1
A
A 01 015 02
0.1 0.65 0.65 0.68
0.5 0.66 0.65 NaN
1 0.64 0.64 NaN

empirically set four parameters in Algorithm 1 as n =0.01, A; =1,
A =0.1 and )\.3 =0.1.

5.4. Quantitative tracking performance

In this section, we will give the quantitative evaluation over
30 video sequences. The quantitative visual tracking performance
is evaluated by four kinds of objective measures [44]: the posi-
tion error, the overlap rate, the precision plot and the success plot.
The position error is defined as the Euclidean distance between
the central location of the tracked bounding box and the manu-
ally labeled ground truth. The overlap rate is defined as %ﬁgg,
where By and Bg are the tracked bounding box of each frame and
the corresponding ground truth, respectively. The precision plot
indicates accumulated position errors under different location er-
ror thresholds. The success plot reflects the accumulated successful
rates versus different overlap thresholds, where the successful rate
counts the number of video frames where the overlap rate is larger
than 0.5. The position error and the overlap rate are the objec-
tive measures to evaluate the tracking performance for each video
frame, while the precision and success plots can illustrate the over-
all tracking performance.

Firstly, we test the average tracking performance over 30 video
sequences. The average position error and the average overlap rate
of one video frame are denoted as ave, and ave,, respectively. The
mean values of ave, and ave, over 30 video sequences are shown
in Fig. 6. It is seen from Fig. 6(a) that the smaller the position er-
ror, the higher the tracking accuracy, and the position error of our
proposed NR-MVDLSR is 5.4, which is obviously smaller than other
methods. This means that our method can still track the moving
target in all selected video sequences. In Fig. 6(b), the large value
of overlap rate means the tracker can use a bounding box with
an appropriate scale to track the target. This figure shows that
our method can give better overlap rate performance than other
methods.

These 30 selected sequences contain five adverse factors against
visual tracking such as: occlusion, motion blur, scale variation, il-
lumination change and pose variation. Hence, in the next exper-
iment, we divide the test video sequence into 5 groups. The de-
tailed information about the video group is shown in Table 7.

Based on Table 7, we test the mean value of ave, and ave, over
different video groups to illustrate our tracking performance in dif-
ferent scenes (see Tables 8 and 9).

From Tables 8 and 9 we can clearly see that the proposed NR-
MVDLSR method ranks top two among all trackers. This means
that our proposed sparse representation model can give the good
tracking performance when facing different adverse factors against
visual tracking. The NR-MVDLSR, MVDLSR and MVSR use multi-
feature to achieve visual tracking, hence they can give obviously
lower position error than the single-feature based sparse repre-
sentation trackers such as 11-APG and MTT. MVDSL gives a bet-
ter tracking performance than MVSR method because it intro-
duces multi-view discriminant learning into the sparse represen-
tation. Since MVDSL only uses I, ; norm to constrain the sparse
representations of multi-view observation projections, it may not
guarantee the low position error when facing severe motion blur.
Compared with MVDSL, the proposed NR-MVDLSR method adds
a non-local regularizer into the multi-view discriminant learning
based sparse representation model to smooth the sparse repre-
sentations of multi-view group projections, which can obviously
reduce the position error and enhance the overlap rate in chal-
lenging video sequences. In visual tracking, KCF is a well-known
tracking method. Through the comparison with KCF, we can clearly
see the advantage of NR-MVDLSR. In above experiment, the posi-
tion error performance for motion blur test is not better than that
for other adverse factors because the motion blur will destroy the
inherent correlation between different pixels. Hence it is a tough
work to overcome this adverse factor. Here, we use Tables 10 and
11 to show the detailed tracking performance of different methods
in motion blur video groups to further illustrate tracking accuracy
of our method. From Tables 10 and 11 we could see that although
our method could not give the best tracking performance in cross-
ing and duderk sequences, the tracking accuracy of NR-MVDLSR is
similar to that of KCE.

Since the precision and success plots are two well-known ob-
jective measures for testing the overall tracking performance, we
now adopt these two measures to test our tracking performance
over 30 video sequences (see Fig. 7). In Fig. 7(a) and (b), the area
under curve (AUC) of each precision and success plot indicates the
rank of different tracking algorithms. Based on this observation, we
can clearly see that the NR-MVDLSR method ranks first on the suc-
cess and precision plots.

5.5. Qualitative tracking performance

In this section, we select ten challenging sequences to show the
qualitative tracking performance (see Fig. 8). The video sequence
selecting strategy is that: we randomly select two video sequences
from each video group. This test can give a direct impression of
the tracking performance when the target facing different adverse
factors.
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Table 7

The detail information about the video groups for experiments.

Adverse factors Video sequence

Occlusion

Motion blur

Scale variation
[llumination change
Pose variation

Faceocc1, Faceocc2, Football, Coke, Subway, Jogging, Lemming
Crossing, Singer2, Jumping, Dudek, Mountainbike, Deer

Car4, Singer1, Walking2, Carscale, Fleetface, Freeman4

Trellis, Skating1, Car11, David Indoor, Fish

Basketball, Shaking, Bolt, Mhyang, Boy, Sylvester

Table 8
Mean value of position error over different video groups. The best two results are denoted as bold and italic.
Seq.
Meth. NR-MVDLSR  MVDLSR  MVSR  IVT CT CSK 11-APG~ MTT  Frag KMS  STRUCK TLD OAB  KCF
Occlusion 53 14.8 245 348 201 265 415 369 244 334 12.6 25.1 208 16.6
Motion blur 7.2 16.4 249 67.2 66.8 450 46.0 62.6 470 27.8 239 732 355 87
Scale variation 54 11.6 124 148 365 181 17.6 250 338 411 22.5 21.8 292 241
[llumination change 5.0 49 13.0 180 304 184 233 18.8 389 204 19.0 258 233 77
Pose variation 4.2 10.5 20.5 427 437 409 648 398 550 255 28.0 444 660 12.7
Table 9
Mean value of overlap rate over different video groups. The best two results are denoted as bold and italic.
Seq.
Meth. NR-MVDLSR ~ MVDLSR  MVSR  IVT CT CSK 11-APG ~ MTT Frag KMS STRUCK TLD OAB  KCF
Occlusion 0.72 0.58 0.49 0.41 045 047 031 038 047 030 0.59 0.50 042 0.56
Motion blur 0.67 0.58 0.45 034 031 035 036 0.31 030 041 0.53 043 041 0.62
Scale variation 0.74 0.60 0.56 054 029 039 043 040 031 0.22 0.41 043 029 041
[llumination change  0.77 0.70 0.63 052 035 045 034 044 024 033 0.55 046 041 0.66
Pose variation 0.72 0.62 0.52 028 035 046 024 028 037 041 0.47 034 035 065
Table 10
Detailed position error performance over motion blur video group. The best two average results are denoted as bold and italic.
Seq.
Meth. NR-MVDLSR  MVDLSR  MVSR VT CT CSK 11-APG ~ MTT Frag KMS  STRUCK  TLD OAB KCF
Crossing 44 5.8 23.8 18.5 32 6.7 423 309 213 5.7 33 13.8 4.2 29
Singer2 121 56.5 71.6 1759 1010 1041 1354 140.8  58.7 209 1011 2535 1058 75
Jumping 41 5.6 115 38.2 62.6 15.8 244 41.2 43 47.8 5.9 4.6 58.8 12.8
Duderk 11.7 12.7 25.7 9.8 16.5 13.7 234 14.3 44.6 45.3 17.9 18.7 253 102
Mountainbike 5.9 6.5 75 8.1 94.2 6.1 13.2 10.3 1023 30.7 8.7 1069 93 6.2
Deer 51 11.2 9.1 152.6 1234 1234 374 1380 510 16.1 6.7 419 9.7 12.8
Table 11
Detailed overlap rate performance over motion blur video group. The best two average results are denoted as bold and italic.
Seq.
Meth. NR-MVDLSR  MVDLSR  MVSR  IVT CT CSK 11-APG ~ MTT  Frag KMS  STRUCK TLD OAB  KCF
Crossing 0.63 0.60 0.24 0.31 0.66 049 017 022 029 0.56 0.61 043 065 0.70
Singer2 0.55 0.35 0.18 004 029 003 0.04 0.04 0.6 0.28 0.03 002 002 0.67
Jumping 0.66 0.58 0.42 0.21 004 017 0.36 020 0.61 0.10 0.58 065 0.08 0.28
Dudek 0.68 0.65 0.49 072 063 069 0.52 066  0.51 0.51 0.61 0.61 049 0.72
Mountainbike  0.75 0.72 0.71 070 018 069 0.64 0.67 012 0.48 0.66 026 062 071
Deer 0.72 0.59 0.65 003 003 004 041 004 0.08 0.52 0.66 0.58 062 063

1) Occlusion: In Fig. 8(a), the faceocc1l sequence is used to test

the tracking performance under occlusion. In this sequence, a
woman’s face undergoes the partial and severe occlusion by a
book. From the tracking performance of different methods we
can see that OAB method is not robust to face occlusion. Our
method can still give an exact tracking result in the entire video
sequence. Besides faceoccl sequence, Fig. 8(b) gives a test on
jogging video sequence. This sequence is challenging because
the runner is totally occluded by a lamppost. From the tracking
results we can see that most tracking methods begin to drift
at 181-th frame because the runner suffers a total occlusion af-
ter this frame. Clearly, NR-MVDLSR, OAB, TLD and Frag meth-
ods are robust to this kind of occlusion. Since MVDLSR method

only uses I, ; norm to regularize the sparse representations of
multi-view observation projections, it could not give an exact
tracking performance in jogging sequence.

2) Motion blur: Motion blur means the target region is blurred

due to the motion of target or camera. Jumping and deer video
sequences are all suffered from severe motion blur. Fig. 8(c)
gives the tracking performance of jumping sequence. From
this test we can see that CT, KMS, KCF, MTT and OAB give a
poor tracking performance in this sequence while NR-MVDLSR,
TLD and MVDLSR can still track the motion of the boy’s face.
Fig. 8(d) is the tracking performance of deer sequence. From
this test we can see that NR-MVDLSR and STRUCK methods give
a better tracking performance than other 12 methods do.
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Fig. 7. Success and precision plots over 30 video sequences: (a) Success plot, (b) Precision plot.
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Fig. 8. Qualitative tracking results on the randomly selected frames with some challenging factors: (a)-(b) occlusion, (c)-(d) motion blur, (e)-(f) scale variation, (g)-(h)
illumination change, (i)-(j) pose variation.

3)

Scale variation: In the car4 video sequence (see Fig. 8(e)), there
is a drastic change of scale and illumination when the car
goes underneath the overpass. NR-MVDLSR, MVDLSR and MVSR
methods can perform well in the whole sequence while CT,
Frag, CSK, OAB and KCF methods cannot adaptively suit the
change of the target appearance, hence they give a poor track-
ing performance. In the walking2 video sequence (see Fig. 8(f)),

the scale of the women’s appearance would become more and
more smaller when the target is far away from the camera.
From this test we can clearly see that the proposed NR-MVDLSR
method is robust to the scale variation in walking2 sequence.
4) Illumination change: Trellis and skating1 sequences are suffered
from severe illumination change. From Fig. 8(g) we can see
that when the illumination of target’s face changes dramati-
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Fig. 9. Each frame position error over 10 video sequences.

cally, such as the 272-th frame, OAB, FRAG, CT and CSK methods
begin to drift. The proposed NR-MVDLSR method can still give
a better tracking performance in the whole sequence because it
is robust against the severe illumination change. In Fig. 8(h), the
illumination in the skating arena would be frequently changed.
Moreover, the player would also be suffered from occlusion and
pose variation. From this test we can see that NR-MVDLSR and
MVDLSR methods can give a better tracking performance than
other 12 methods do.

Pose variation: The tests in Fig. 8(i) and (j) are very difficult
because there is severe pose variation in these two video se-
quences. MVDLSR method fails to track the target in the shak-
ing video sequence whereas NR-MVDLSR can still accurately
track the moving target in two video sequences.

9]
—

Fig. 8 only uses 2 random selected frames to illustrate the qual-
itative tracking performance of different tracking methods. To il-
lustrate the performance of our proposed method more clearly, we
also give each frame position error (see Fig. 9) for these 10 selected
video sequences in qualitative evaluation. For a clear display, we
only choose two methods, which have good tracking performance
in Fig. 8, as comparison to carry out this test. From Fig. 9, we can
clearly see that our method still maintains small position errors
over 10 very challenging video sequences.

5.6. The failure case

Although the proposed sparse representation method can give
a good tracking performance in aforementioned experiments. It
could not guarantee a good tracking performance in motorrolling
video sequence (see Fig. 10). Motorrolling sequence is very chal-
lenging because it contains very large scale changes and fast ro-
tation. The possible reason for the tracking failure in motorrolling
sequence is that the template updating strategy cannot timely cap-
ture the appearance changes, and thus the target cannot be well
represented by multi-view dictionaries. Online multi-view dictio-
nary learning technology may solve this problem, however it is out
of our scope in this paper.

Fig. 10. Randomly selecting two frames as example to show the failure cases in
motorrolling video sequence.

6. Conclusion and future work

In this paper, we have proposed a nonlocal regularizer penal-
ized multi-view discriminant sparse representation method for vi-
sual tracking. By exploiting the group similarity using multi-view
discriminant learning and adopting a nonlocal regularizer to en-
force the spatial smoothness among the sparse representations of
different group projections, the proposed method can properly fuse
reliable and unreliable observation groups to enhance the robust-
ness of visual tracking in severe occlusion, illumination change or
pose variation. Experimental results illustrated that the proposed
method can give a superior performance in challenging video se-
quences as compared to a number of known methods in literature.
In this paper, the multi-views for visual tracking have the same di-
mension. To extend our sparse representation to other computer
vision applications, our future work is to build a more general
multi-view sparse representation model with flexible size of fea-
ture subsets.
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Appendix A

Here, we discuss the detailed mathematical deduction of
Algorithm 1. To solve problem (14), we first adopt augmented La-
grange function to rewrite (14) as

LO.U.ZP.AB) = 2 3D IPHYE - (P AYZ2

i=1 k=1
+ M Tr(UWUT) + 1,]©]|24
+ A3Tr(PT(S —D)P)
+ <A, B(U)+C(Z) -D(O) >

Lisw e -p@ @
Ay Ap
A 22
Ajj e R™M (i=1,2;j=1,2) being its submatrices, and >0 is
the penalty parameter. Since it is very difficult to choose an op-
timal value for B8 in advance, we adopt a simple and efficient rule
to adaptively update it to further accelerate the convergence rate
(see the 9 step in Algorithm 1). Problem (A1) becomes a non-
constrained problem, which can be solved by iteratively minimiz-
ing the augmented Lagrange function and updating the Lagrange
multiplier as follows,

(®t+1’ ZH], Ut+l , pt+l) _

where A = ) is the Lagrange multiplier matrix, with

@rﬁr&gpﬁ(@),U, ZP A pB), (A2)

AT = AT+ BBUT) +C(Z) - D(O@)). (A3)

Note that it is difficult to solve (A2) directly because it requires
to simultaneously minimize four variables. Next, we propose to use
an alternating strategy to divide (A2) into four sub-problems, re-
ferred to as P-step, ®-step, Z-step and U-step.

P-step is to update projection matrix P. Here, we fix ©, Z and
U, and update P by solving the following problem

C m
. 1
min 35375 I PTYE — (P)TANZ|}
i=1 k=1
+ AsTr(PT(S— D)P). (A4)
Using the relationship between matrix trace and Frobenius norm,
we can simplify problem (A4) as

min Tr(PTMP) + AsTr(PT (S — D)P), (A.5)

where QY= Y¢ (Y - A*ZF)(YX — A¥Z])T, M =diag(Q'.Q?.....
Q™). Let S’ = A3S + M, then problem (A5) becomes

mpin ATr(PT(S' — AsD)P), (A.6)
which can be solved directly by setting its first derivative to zero,
giving

D !S'P = A;P. (A7)

The eigenvector matrix P* with respect to D~'S’ becomes the so-
lution to problem (A7).

By fixing P, Z and U, the ©®-step aims to update matrix @+!
by solving the following problem

t 1

mink; |©[l21 + S 1BUY) +¢(2) - D(O) + B A'llz. (AS8)
Ignoring the constant elements in (A8), we can obtain

A
o+l = r% (Z' + ﬂ%Ag]), (A.9)

where I'y(-) is a matrix operator [42]. Suppose there is a matrix X,
such that I'y (X) outputs a matrix in which the i-th row of 'y (X)
is updated as

[Fa X)]G,2) = I1X@, )2

0 otherwise

)xa,:) XG>

(A.10)

where [y (X)](i, :) means the i-th row in ', (X), X(i, :) means the
i-th row in X, 0 is a zero vector which has the same size as X(i, :),
and « is a soft thresholding.

In Z-step, Z'*! is updated by solving the following problem

LN gk Tk kN T a7k (2

min 5;;”“’ )TYF — (POTAYZIZ

t ¢ ‘l

+ = IBUY) +C(Z) - DO + —

2 Bt

In (A1), let F(Z) = X, Y, I1PHTYE - (PHTANZE|Z, Q) =

1BUY) +¢(Z) — D(O1) + #AtH%, where F(-) and Q(-) are dif-

ferentiable functions. Applying composite gradient mapping [54] to
problem (A11), we can obtain

A2, (A11)

t
7 = mZinF(Vt)+ <vF(V),Z > +2ln||z ~ VI3 + %Q(Z),
(A12)

where 7 is a step-size parameter. Problem (A12) can be solved by
setting its partial derivative with respect to Z to zero, leading to

%(z —Vi 4 v F(VY)) + Bcr (B(Uf) +C(Z) -D(O@) + éA’) =0,
(A13)
where
[VF(VOIK = —((PHTYOT((PY)TYE — (PY)TANV)
i=1,2,....c k=1,2,....m. (A14)

In (A13), C*(-) : R¥mx2n _, Rmxn s the adjoint operator. The prop-
erty of this operator is shown in Appendix B. Rearranging (A13),
we can obtain

1
C'(C(Z) = ——4 (Z -V +nvF\V))
np
1
—C*(B(UY = D@ + FAt)’ (A15)
where
cr(B(U") —D(O") + %Af)
1AL @+l 1At
=c[ F pron ) (A16)
( %A% U+ %Agz
Based on the property of operator C*, equation (A16) can be sim-
plified as
o(Fe A, )
Ay U + 5 A
1 1
=g Ay -0 U - FAQZ. (A17)
Substituting (A17) into (A15), we can obtain
1 1
C(C@) = —gr AL + O +U + A
! (Z-V'+nvF\Y)), (A18)

“np
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with

c(C(2)) = C* (5 _°Z> v (A19)
Similar to (A17), (A19) is also obtained by using the property of

operator C*. Based on (A18) and (A19), we can finally obtain
Zt+1 _ 1 At ®t+1 Ut 1 1 vr F(Vt)
=T\ - gritn + +U + Bt V. —-nv )

AY+ —
22 71,3
(A.20)
gt
1+2npt*
In U-step, U*! is updated by solving the following problem

where 7 =

1
FA[”%'
(A21)

Problem (A21) is differentiable and can be solved by setting its first
order derivative to zero, obtaining

t
min A Tr(uLu’) + S IBMU) + c@Z* —p(@!) +

1
Bt
where B*(-) is another adjoint operator. The property of this op-

erator is also shown in Appendix B. Similar to (A15), we rearrange
(A22) as

MUL+ BB (B(U) +C(Z7) = D@y + —A) =0, (A22)

B*(B(U)) = _/TtUL - B*(C(Z"") - DO + %A‘), (A.23)
1
where

B* (C(Zt+1) _ D(@H—l) + %At)

1
)
)
grAy, —ZF

Based on the property of operator B*, equation (A24) can be sim-

B*<;;Aql +Zt+1 — @t (A-24)

1
Ay

plified as
B #Atn +Z - @t %qu
LAt 1AL Zt+l
prot21 proT22 (A.25)
— %Atzz _ Zt+1.
Substituting (A25) into (A23), we can obtain
t
B*(B(U)) = Bl lAgz +Z1, (A.26)
A Bt
with
B*(B(U) =U. (A.27)

where (A27) is obtained by using the property of operator B*.
Based on (A26) and (A27), we finally obtain

-1
Ut = (1 gL 7041 LA A28
= +)\1 ( Bt 22)- (A.28)

Appendix B

Here, we discuss the property of adjoint operators B* and C*.
Let C*(-) and B*(-) be the adjoint operators of C(-) and B(-),
respectively. Inspired by [41], we have the following property

<C(Z),A >=<Z,C*(A) > . (B.1)

<BWU),A >=<U,B*(A) >. (B.2)

Through the definition of operator C(-) and B(-) in equation
(15), we can obtain

T
_ Z 0 A11 A12
<C@)A>n_ﬂ((o _Z><Aﬂ AD))

(B.3)
= Tt‘(ZA?1 - ZAEZ)
=<Z, Ay — Ay >.

T
_ 0 0 An A]z
<BU), A >= Tr((o U) <A21 Azz) )

(B.4)
=Tr(UAL,)
=< U, A22 > .

Based on (A1) and (A3), the adjoint operator C*(-) can be calcu-
lated as

C*(A)=Aun—Ap. (B.5)
Based on (A2) and (A4), B*(-) can be calculated as
B*(A) = Aqpm. (B.6)

Appendix C

Let £+l = £(@t+1 U+ z+1 pHH1 At Bty and ef = ||B(UY) +
c(ZhH - D(@‘)H%. We want to prove that the augmented Lagrange
function in Algotithm 1 is bounded, which means that

t t—1
,L‘f”—ﬁff%ef t=0.1.....n

Proof. Given
EH—] :£(®t+1 Ut+l Zt+1 Pt+1 A[ ‘Bt)
we can obtain
£t+1 < £(®t+1 Ut+1 Zt+1 Pt At ,Bt)
< E(@H—l Ut+1 Zt Pt A[ ﬂt)
< £L(@H U, Z P AL BY)
< E(@t,Ut,Zt,Pt,A[,ﬂt)
=L < AT AP BUY +C(Z) - D(OY) >

(C1)

t _ pt-1
PP s e - pen

=L+ BNBUY) +C(Z') - D(OY) ||

t_ pt-1
P s e - p@n. (2)

Therefore

ot g BB
- 2

et t=0,1,...,n (C.3)

To prove e is bounded, we should prove Af is bounded. This proof
is similar to Lemma 1 in [52]. Based on this observation, we use
Theorem 4 of [53] to prove A! is bounded. Hence e! = (A[ﬁ*ti‘}fl)z

is bounded.

This proof implies the upperbound of augmented Lagrange
function. Based on [43], if 352, (85) 281 < 400, the upperbound
of augmented Lagrange function can imply that any accumulation
points of Uf, Z!, P and ®! can approach a feasible solution. O
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